CONTENTS

LIST OF FIGURES		IV
LIST OF TABLES		V
ABBR	ABBREVIATIONS	
SUMMARY		1
1.	INTRODUCTION	3
1.1	Regulation of gene expression by oxygen	3
1.1.1	Oxygen gradients and metabolic zonation of the liver	5
1.1.2	Regulation of zonated gene expression by normoxia	6
1.1.3	Regulation of zonated gene expression by hypoxia	8
1.2	Regulation of tyrosine aminotransferase (TAT) and serine dehydratase (SerDH) gene expression	9
1.2.1	Tyrosine aminotransferase	9
1.2.2	Serine dehydratase	11
1.3	Aim of the study	13
2.	MATERIALS	14
2.1	Animals	14
2.2	Bacterial and yeast strains, vectors and plasmid constructs	14
2.2.1	Bacterial and yeast strains	14
2.2.2	Vectors	14
2.2.3	The pGL3 basic and pGL3 promoter plasmid constructs	17
2.2.4	MATCHMAKER one hybrid system vector	23
2.3	Rat liver MATCHMAKER cDNA library	23
2.4	Oligonucleotides	25
2.4.1	Oligonucleotides for sequencing of the plasmides	25
2.4.2	Oligonucleotides for Electrophoretic Mobility Shift Assay (EMSA)	26
2.4.3	Oligonucleotides for PCR reaction	26
2.4.4	Oligonucleotides for pGI3-NRE construction	26
2.5	Digoxigenin-labeled RNA probes	27
2.6	Antibodies	28
2.7	Enzymes	28
2.8	Detection, purification and synthesis systems ("Kits")	32
2.9	Stock solutions	32
2.10	Chemicals	34
2.11	Other materials	37
2.12	Instruments	37
3.	METHODS	40
3.1	Cell biological methods	40
3.1.1	Isolation of primary rat hepatocytes	40
	Liver perfusion	40

	Preparation of the hepatocyte suspension	40
3.1.2	Primary rat hepatocytes culture	42
3.1.3	Culture of HepG2 and HeLa cells	43
3.1.4	Harvesting of hepatocytes, HepG2 and HeLa cells	44
3.1.5	Induction experiments in hepatocytes	45
3.2	Molecular biological methods	45
3.2.1	cDNA synthesis	45
3.2.2	Polymerase chain reaction (PCR)	46
3.2.3	TOPO cloning of PCR products	49
3.2.4	Cloning of the synthetically synthesized double stranded oligonucleotides into the plasmid pGl3 prom	50
	Preparation of oligonucleotides for the ligation in a plasmid	50
	Preparation of the pGI3 promoter vector for ligation	51
	Ligation of the oligonucleotides into the plasmid pGI3 prom	52
	Preparation of competent E. coli cells with one step method	53
	Transformation of E. coli with the ligation mixture	54
3.2.5	Isolation and analysis of plasmid DNA (minipreparation)	55
3.2.6	Isolation and analysis of plasmid DNA with silicate columns (Maxipreparation)	57
3.2.7	Sequencing of plasmids	58
3.2.8	Transfection of hepatocytes, HeLa and HepG2 cells	59
3.2.9	Luciferase detection	60
3.2.10	Preparation of digoxigenin-labeled TAT and SerDH RNA probes	61
	Linearization of the plasmids	61
	In vitro transcription	62
	Estimation of the labeling efficiency	62
3.2.11	RNA isolation from primary rat hepatocytes	63
3.2.12	Northern blot analysis	65
	Denaturation of the RNA	65
	Electrophoresis conditions	66
	Visualization of the RNA with ethidium bromide	66
	RNA transfer to nylon membranes	66
	Hybridization of the RNA with digoxigenin-labeled RNA probes	67
	Detection and quantification	67
3.2.13	Electrophoretic mobility shift assay	69
	Preparation of probes for analysis of DNA-protein binding	69
	5'-end labeling of DNA probes by T4 polynucleotide kinase	69
	Preparation of nuclear extracts from primary hepatocytes and HepG2 cells	70
	Measurement of protein concentration by Bradford method	72
	Electrophoretic mobility shift assay	73
3.3	Yeast one hybrid assay	75
3.3.1	Integration of the target-reporter construct into the yeast genome	76
	Preparation of pHISi-NRE target-reporter construct	76
	Linearization of the target-reporter vector	76
	Small-scale yeast transformation	76

3.3.2	Testing new reporter strain for background expression Amplification of the AD fusion library and purification of the library DNA Plasmid library titering	79 79 79
	Plasmid library amplification	80
	Isolation and analysis of the plasmid DNA (gigapreparation)	80
3.3.3	Screening of the AD fusion library using the modified yeast reporter strain	81
3.3.4	Isolation of plasmid from yeast	82
3.4	Security measures	83
4.	RESULTS	84
4.1	Normoxia-dependent induction of SerDH and TAT mRNA expression	84
4.1.1	Induction of TAT mRNA expression under normoxia and its modulation by dexamethasone	84
4.1.2	Induction of SerDH mRNA expression by glucagon and its modulation by oxygen	84
4.2	Regulation of TAT and SerDH promoter luciferase gene constructs by oxygen	87
4.2.1	Sequence analysis of the rat TAT and SerDH promoters	87
4.2.2	Regulation of TAT promoter luciferase gene constructs by oxygen, dexamethasone and glucagon	88
4.2.3	Regulation of SerDH promoter luciferase gene constructs by oxygen	91
4.3	Induction of the TAT and SerDH NRE enhancer Luc gene constructs by normoxia	92
4.3.1	Induction of the TAT NRE enhancer Luc gene constructs by normoxia	92
4.3.2	Induction of the SerDH NRE enhancer Luc gene constructs by normoxia	95
4.4	Binding of an oxygen-inducible complex to NRE sequences of the TAT and SerDH promoters	98
4.5	Identification of putative NRE-binding proteins by MATCHMAKER one hybrid system experiments	102
5.	DISCUSSION	103
5.1	Zonation and regulation of tyrosine aminotransferase (TAT) and serine dehydratase (SerDH) gene expression: control by hormones and oxygen	103
5.1.1	Hormone gradients	104
5.1.2	Oxygen gradients	106
5.2	O ₂ -dependent regulation of gene expression: a common phenomenon	107
5.2.1	O ₂ regulatory elements and transcription factors	108
	Characterization of the normoxia responsive elements	108
	Normoxia inducible factors	110
	Hypoxia-inducible factors and hypoxia responsive elements	111
5.3	Candidate transcription factors functioning as NRE binding proteins	113
5.4	The first steps in the normoxia-dependent gene regulation	114
Litera	ture	. 116

LIST OF FIGURES

Fig. 1	Model of the oxygen signalling pathway regulating gene expression	3
Fig. 2	Zonation of gene expression in liver	5
Fig. 3	Scheme of HIF-1α	8
Fig. 4	Scheme of the TAT gene promoter and its responsive elements	11
Fig. 5	Scheme of the SerDH gene promoter and its responsive elements	12
Fig. 6	Structure of the pBR322	16
Fig. 7	Structure of the pBluescript vector (pBS-KSII)	16
Fig. 8	Structure of the plasmid pCRII-TOPO	17
Fig. 9	Structure of the pME18S-FL3	18
Fig. 10	Structure of the pGL3 basic vector	19
Fig. 11	Luciferase gene constructs with the regions of TAT and SerDH promoters	20
Fig. 12	Structure of the pGL3 promoter vector	22
Fig. 13	Luciferase gene constructs with TAT-NRE's and SerDH NRE's as enhancers	22
Fig. 14	Structure of the pHISi	24
Fig. 15	Structure of the pACT2 vector	25
Fig. 16	Schematic representation of the PCR	47
Fig. 17	Detection of DNA-binding proteins using the one hybrid system	75
Fig. 18	Screening of yeast clones on histidine-lacking medium	77
Fig. 19	Modulation of TAT mRNA expression by oxygen in rat primary hepatocytes	85
Fig. 20	Modulation of glucagon-dependent SerDH mRNA expression by oxygen in rat primary hepatocytes	86
Fig. 21	Localization of putative normoxia responsive elements within the TAT gene promoter	87
Fig. 22	Localization of putative normoxia responsive elements within the SerDH gene promoter	88
Fig. 23	Regulation of TAT promoter LUC gene expression by oxygen	89
Fig. 24	Regulation of TAT promoter LUC gene expression by oxygen and glucagon in the presence of dexamethasone	90
Fig. 25	Regulation of TAT promoter LUC gene expression by oxygen and glucagon in the absence of dexamethasone	90
Fig. 26	Regulation of SerDH promoter LUC gene expression by oxygen	91
Fig. 27	Oxygen-dependent expression of pGI3-TAT-NRE Luc constructs in primary rat hepatocytes	93
Fig. 28	Oxygen-dependent expression of pGl3-TAT-NRE Luc constructs in HepG2 and HeLa cells	94
Fig. 29	Glucagon-dependent expression of pGI3-TAT-NRE1 Luc construct in primary rat hepatocytes	95

Fig. 30	Oxygen-dependent expression of pGI3-SerDH-NRE Luc constructs in primary rat hepatocytes	96
Fig. 31	Oxygen-dependent expression of pGI3-SerDH-NRE Luc constructs in HepG2 and HeLa cells	97
Fig. 32	EMSA with nuclear extracts from primary hepatocytes	99
Fig. 33	EMSA with nuclear extracts from HepG2 cells	100
Fig. 34	EMSA with TAT NRE-1 and HO-1 CRE/AP-1 oligonucleotides	101
Fig. 35	Alignment of normoxia responsive elements. Generation of a first consensus	112
Fig. 36	Model of the oxygen signalling pathway	115

LIST OF TABLES

Tab. 1	O ₂ -modulated processes and genes in mammals	4
Tab. 2	Putative NRE-binding proteins as identified by the yeast one hybrid experiments	103