
Chapter 1

Introduction

1.1 Why Supersymmetry ?

Today the Standard Model has become a successful theory describing physics at sub-
nuclear scales which has been tested by many collider experiments to a high level of
accuracy [1, 2]. The Higgs bosons predicted by the Standard Model has not been di-
rectly observed by todays experiments.

Despite its great success, there still remains several serious problems, such as the
arbitrariness of the particle spectrum and gauge group, the large number of free pa-
rameters, and maybe the most severe one is the inability to turn on gravity described
by the general theory of relativity. These suggest that the Standard Model is not the
final answer of nature but rather an effective description valid up to the electroweak
scale of order O(100 GeV ). Thus, the Standard Model has to be extended.

Various efforts have been made over the last two decades to go beyond the standard
model and correspondingly, solve the above problems. The most prominent one and
still promising until now is the supersymmetric extension of the Standard Model which
is reviewed, for example, in [3].1 It has N = 1 global supersymmetry because extended
supersymmetries (N ≥ 2) cannot accommodate the chiral structure of the Standard
Model. As supersymmetry is not observed in nature, it must be broken at low energy
if it is to play any role at all. This leads to a mass split between bosonic and fermionic
partners of the supersymmetry breaking scale. The determination of this scale should
explain why the supersymmetric partners of the Standard Model particles could be
heavy enough to escape detection in accelerator experiments around the electroweak
scale ∼ 100 GeV so far. One of interesting aspects of this theory is that all three gauge
couplings unify at a scale ∼ 1016 GeV , see e.g. [4].

There are various ways to break supersymmetry, however only two of them are of
phenomenological interest, namely, supersymmetry has to be either spontaneously or
softly broken. Since the supersymmetric extension of the Standard Model only has a
global supersymmetry, spontaneous breaking poses a new problem, namely the pres-
ence of a massless fermion called Goldstone fermion. This is a consequence of the
supersymmetric Goldstone theorem, see e.g. [5]. So if the global supersymmetry is
spontaneously broken, the supersymmetric extension of the standard model would be
ruled out. Thus, the only way out is a soft breaking of global supersymmetry. This
can be done by adding non-supersymmetric terms to the theory which do not generate

1See next section for a discussion of supersymmetry.
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any quadratic divergences [6]. In addition, there is an alternative way to motivate the
relevance of softly broken supersymmetric theories. Ultimately, one has to couple the
supersymmetric standard model to gravity. This in turn requires the promotion of
global supersymmetry to a local supersymmetry which is called supergravity.2 Further-
more, spontaneous local supersymmetry breaking in the limit MPlanck → ∞ but with
the gravitino mass remains fixed, yields the soft supersymmetry breaking terms [7].
This motivates many theorists today to study supergravity as a candidate beyond the
Standard Model.

Let us turn to extended supersymmetric theories. Since these theories cannot ac-
commodate the chiral structure, it seems that the extended supersymmetries are not
phenomenologically interesting. Furthermore, the no go theorem which states that any
supersymmetric theory with N supersymmetries either all or none of them are sponta-
neously broken, demands that extended supersymmetric theories must be broken at the
same supersymmetry breaking scale which is phenomenologically impossible. However,
in the last decade few examples have been appeared which show that these theories
can spontaneously be broken to N = 1 [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].3 These
examples indicate that the no go theorem can be avoided and in addition, yield a hope
for phenomenological studies. Still the resulting N = 1 theories cannot accommo-
date the chiral structure because their parental theories are extended supersymmetric
theories. Nevertheless, extended supersymmetries remain an interesting study, in par-
ticular to see how one can evade the no go theorem and study the general aspects of
their breaking. In this thesis, we address some general aspects of spontaneous breaking
N = 2 → N = 1 in supergravity as an example of spontaneous breaking of extended
supersymmetric theories.

1.2 What is Supersymmetry ?

In this section we briefly consider the structure of rigid (global) supersymmetry in four
dimensional Minkowski space. The interested reader is referred to the literature for
further details [20, 21,22,5].

By definition, supersymmetry transforms bosons into fermions and vice versa. In
order to realize of such transformations one introduces supersymmetry generators (or
supercharges) Q, acting as:

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 , (1.1)

where we have split up the Hilbert space into bosonic states |boson〉, and fermionic
states |fermion〉. Such a boson-fermion symmetry has far-reaching consequences. First
it affects the statistic of the transformed state and changes it by a half-unit. Thus, the
supersymmetry generators themselves have spin one-half and form spinor representa-
tions of the Lorentz group, contrary to the usual generators of symmetry transformation
which have integer spin. The second important implication of such transformation is
that every particle has a superpartner. The notation for the bosonic superpartners
of the known fermions are labeled by the prefix ’s-’ (e.g. slepton, squark), whereas
the fermionic superpartners of the known bosons are denoted by the suffix ’-ino’ (e.g.
gaugino, gravitino). The members of a supersymmetric theory are arranged in a so

2See section 1.3 for a discussion of supergravity
3See also section 1.4.
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called supermultiplet which has the same number of bosonic and fermionic degrees of
freedom.

Such supercharges Q which form spinor representations of the Lorentz group satisfy
an anticommutation relation [23]

{A,B} ≡ AB + BA , (1.2)

and moreover, do not contradict the theorem of Coleman and Mandula [24], which
states that for every non-trivial relativistic field theory , under some very mild assump-
tion all the symmetries of the S-matrix commute with the generators of the Poincaré
group. This is because the essential assumption that they make, is that the symmetry
generators form a closed algebra under commutation relations, thus restricting them-
selves to Lie groups of symmetry transformation.

It was proven in [25] that a set of commutation and anticommutation relations be-
tween Poincaré generators and supercharges (usually called Poincaré superalgebra) is
the only graded Lie algebra of symmetries of the S-matrix consistent with relativis-
tic quantum field theory. Furthermore, the Poincaré superalgebra together with other
generators of the Lie group G which is the symmetry of the S-matrix form an algebra
which admits a Z2 graded structure. Such an algebra is usually called supersymmetry
algebra. To see the meaning of this graded structure, let us first call the generators
which satisfy the commutation relation (Lie algebra) even and the supercharges Q to
be odd. Then these even and odd generators must satisfy the rules:

[even, even] = even ,

{odd, odd} = even , (1.3)
[even, odd] = odd .

To make it clear, let us denote Pa the four momentum and Jab the Lorentz group
generators respectively, with a = 0, ..., 3 and in addition there are some supercharges
QÂ, where Â = 1, ..., N . Therefore the expression of the supersymmetry algebra which
has the Z2 graded structure (1.3) is the following:

[Jab, Jcd] = −i
(
ηbc Jad + ηad Jbc − ηbd Jac − ηac Jbd

)
,

[Jab, Pc] = i
(
ηac Pb − ηbc Pa

)
,

{QÂ, QB̂} = −2 (γC)aPa δÂB̂ − 4 C ZÂB̂ , (1.4)

[Pa, Pb] = [Pa, QÂ] = 0 ,

[Jab, QÂ] = − i
2
γab QÂ ,

where QÂ are four spinors, C is a charge conjugation matrix defined by

C γa C−1 = −γT
a , (1.5)

with the superscript T stands for the transpose, γa are the Dirac matrices, 2γab ≡
[γa, γb], and the metric 2ηab = {γa, γb} = 2 diag(+1,−1− 1,−1).4 In (1.4) we have also
introduced the antisymmetric quantities ZÂB̂ called central charges and they commute
with all the generators defined above. Due to their antisymmetry, it is easy to see that

4See also appendix A.
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the central charges are trivially zero if there is only one supercharge. This minimal
supersymmetry in four dimensions is called N = 1 supersymmetry. On the other hand
if there are more than one supercharge present in a theory, then it is called extended
supersymmetry.

Furthermore, since the mass squared operator defined as

M2 = P aPa , (1.6)

commutes with all generators of the supersymmetry algebra (1.4), then the mass
squared is a supersymmetric invariant.5 Hence in Minkowski space all the particles
within the same supermultiplet have to be degenerate in mass. There are two types of
irreducible representation: the massive and massless representations. As we are going
to see they have a rather different structure and need a separate study. In addition,
we restrict ourselves in this section to study the massive representation without the
central charges, i.e. ZÂB̂ = 0, while the massless representation satisfies trivially this
requirement.

Before proceeding further to the massless and massive representations of the super-
symmetry algebra (1.4), let us first use the fact that a four spinor is reducible which
means that the supercharges QÂ can be decomposed into two Weyl spinors

QÂ
± =

1
2
(1 ± γ5)QÂ . (1.7)

Then it follows that the anticommutation relation in (1.4) reduces into

{QÂ
+, Q̄B̂

−} = 2 σaPa δÂB̂ ,

{QÂ
+, Q̄B̂

+} = {QÂ
−, Q̄B̂

−} = 0 , (1.8)

where Q̄Â ≡ QÂ† γ0 = QÂT C and we have chosen the following basis for γ-matrix:

γa =
(

0 σa

σ̄a 0

)
, γ5 =

(
1l 0
0 −1l

)
, C =

( −iσ2 0
0 iσ2

)
, (1.9)

with
σa = (1l, σx) , σ̄a = (1l,−σx) , (1.10)

where x = 1, 2, 3 and σx are the standard Pauli matrices.6

We shall first analyze the massless case, P aPa = 0. Using Lorentz boost we can
always go to the frame where P a = m(1, 0, 0, 1). The commutation relations (1.8) show
that the only non-zero supercharges are QÂ

+2 and its conjugate Q̄Â−2. Furthermore,
QÂ

+2(Q
Â−2) raise (lower) the spin of a state by a half-unit. Thus, the particle spectrum

in a multiplet can be constructed by acting with QÂ
+2’s on the vacuum states |λ〉 where

λ denotes the helicity. Below, we list some examples for N = 1, 2, 4.

N = 1 :
{

2|0〉 , | ± 1/2〉
| ± 1/2〉 , | ± 1〉

5By definition, an element which commutes with all elements of a Lie algebra is called Casimir

element. In our case, the mass squared operator M2 and the central charges ZÂB̂ are indeed the
Casimir elements of the supersymmetry algebra (1.4).

6See appendix A.


