

Peter Demel (Autor) ortho-Diphenylphosphanylbenzoyl-dirigierte, Kupfervermittelte allylische Substitution und Grignardreagenzien

https://cuvillier.de/de/shop/publications/3211

Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

A	Theoretischer Teil	
1	Einleitung	1
2	Grundlagen der stereoselektiven Synthese	2
2.1	Stereoselektive Synthese	2
2.2	Substratkontrolle in der stereoselektiven Synthese	2
2.3	Konformationskontrollierende Faktoren	4
3	Reagens-dirigierende Gruppen in der Organischen Synthese	5
4	Organokupfer-Reagenzien in der Organischen Synthese	9
4.1	Organokupfer-vermittelte allylische Substitution	9
4.2	Mechanistische Vorschläge zur Kupfer-vermittelten allylischen Substitution	13
5	Aufgabenstellung	16
6	Untersuchungen zur o-DPPB-dirigierten allylischen Substitution mit Organo-	
	kupfer-Reagenzien	18
6.1	Regioselektive allylische Substitution an Allyl-o-DPPB-Estern	18
6.1.1	Auswahl und Synthese der Substrate	18
6.1.2	"Extern" generierte Organocuprate und Organokupfer-Reagenzien in	
	der allylischen Substitution	19
6.1.3	"Intern" generierte Organokupfer-Reagenzien in der o-DPPB-dirigierten,	
	allylischen Substitution – Präkomplexierung als Schlüsselschritt	21
6.2	Stereochemie der o-DPPB-dirigierten allylischen Substitution	25
6.2.1	Stereochemie der allylischen Substitution cyclischer <i>o</i> -DPPB-Derivate	25
6.2.2	Stereochemie der allylischen Substitution acyclischer <i>o</i> -DPPB-Derivate	31
6.2.3	Fazit	37
0.5	Grignard-Reagenzien	38
6.4	Untersuchungen zu den Intermediaten der <i>o</i> -DPPB-dirigierten	50
	allylischen Substitution mit Organokupfer-Reagenzien	40
6.5	Kristallstrukturanalyse von $[(-)-(E)-52]_2$ CuBr	45
6.6	Optimierung der allylischen Substitutionsreaktion durch die Verwendung	
	von substöchiometrischen Mengen CuBr·SMe2	47
7	Kupfer-katalysierte, o-DPPB-dirigierte allylische Substitution	50
7.1	Allgemeine Überlegungen	50
7.2	Zink- und Manganreagenzien in der o-DPPB-dirigierten allylischen Substitution	51

7.3	Organomagnesium-Reagenzien in der Kupfer-katalysierten, o-DPPB-	
	dirigierten allylischen Substitution	53
7.4	Vorstellungen zum Katalysezyklus der Kupfer-katalysierten, o-DPPB-	
	dirigierten allylischen Substitution	55
7.5	Stereoselektivität der katalysierten, o-DPPB-dirigierten allylischen Substitution	57
8	Studien zur Anwendbarkeit der o-DPPB-dirigierten allylischen Substitution	58
8.1	Regioselektivität der o-DPPB-dirigierten allylischen Substitution	58
8.1.1	Regioselektivität an primären o-DPPB-Estern	58
8.1.2	Regioselektivität an sekundären o-DPPB-Estern	63
8.2	Chiralitätstransfer der o-DPPB-dirigierten allylischen Substitution	67
8.2.1	Synthese der Substrate	67
8.2.2	Chiralitätstransfer der allylischen Substitution beim Aufbau tertiärer	
	stereogener Zentren	72
8.2.3	Chiralitätstransfer der allylischen Substitution beim Aufbau quartärer	
	stereogener Zentren	76
8.2.4	Stereodivergenz in der allylischen Substitution der o-DPPB-Gruppe	82
8.3	Fazit	83
9	Synthese eines α -Tocopherol-Analogon	84
9.1	Struktur und Aktivität der Vitamin E-Klasse	84
9.2	Industrielle und akademische Synthesen von α -Tocopherol	84
9.3	Synthese von α -Tocopherol	87
9.3.1	Syntheseplan	87
9.3.2	Synthese und Hydroformylierung des o-DPPB-Esters rac-197	89
9.3.3	Anti-Selektive, o-DPPB-dirigierte Hydroformylierung des	
	1,2-disubstituierten Derivates 32	91
9.3.4	Schutzgruppen für die 1,2-disubstituierte Doppelbindung - Einsatz eines Alkins	92
9.3.5	Schutzgruppen für die 1,2-disubstituierte Doppelbindung - Einsatz eines Vinylsila	ans 93
9.3.6	Zusammenfassung der Synthese – Probleme und Optimierungsvorschläge	97
10	o-DPPB-dirigierte propargylische Substitution	98
10.1	Regioselektiviät in der o-DPPB-dirigierten propargylischen Substitution	98
10.2	Chiralitätstransfer in der o-DPPB-dirigierten propargylischen Substitution	99
10.3	Fazit	103
11	Zusammenfassung	104
11.1	Regioselektivität der o-DPPB-dirigierten allylischen Substitution	104
11.2	Chiralitätstransfer der o-DPPB-dirigierten allylischen Substitution	106
11.3	Synthese eines α-Tocopherol-Anaologons	108
11.4	o-DPPB-dirigierte propargylische Substitution	108
12	Ausblick	109

B Experimenteller Teil

13	Allgemeine Vorbemerkungen	110
14	Methodenentwicklung der o-DPPB-dirigierten allylischen Substitution	
	mit Organokupfer-Reagenzien	115
14.1	Synthese der Substrate 32 und 36	115
14.1.1	AAV1: Allgemeine Arbeitsvorschrift zur Veresterung nach STEGLICH	115
14.1.2	AAV2: Allgemeine Arbeitsvorschrift zur Veresterung nach der KECK-Variante	
	der STEGLICH-Veresterung	115
14.1.3	Darstellung von (E)-2-[2-(Diphenylphosphanyl)-benzoyloxy]-1-phenyl-3-	
	penten 32	116
14.1.4	Darstellung von (E)-2-(2-Benzhydrylbenzoyloxy)-1-phenyl-3-penten 36	117
14.2	Umsetzung der Ester 32 und 36 in der allylischen Substitution mit Organocupraten	118
14.2.1	AAV3: Allgemeine Arbeitsvorschrift zur Umsetzung der allylischen Ester 32	
	und 36 mit Organokupferreagenzien	118
14.2.2	Darstellung von (E)-4-Methyl-1-phenyl-2-penten 33 und (E)-4-Methyl-5-	
	phenyl-2-penten 34	119
14.3	o-DPPB-dirigierte allylische Substitution von 32 und 36 mit CuBr·SMe ₂	und
	MeMgI/Et ₂ O	121
14.3.1	AAV4: Allgemeine Vorschrift zur Durchführung der allylischen Substitution	
	mit CuBr·SMe2 und Grignard-Reagenzien	121
14.3.2	Darstellung von (E)-4-Methyl-1-phenyl-2-penten 33	121
14.3.3	Kontrollexperiment zum dirigierenden Einfluss der o-DPPB-Gruppe im	
	Verlauf der allylischen Substitution: Umsetzung von (E)-2-(2-Benzhydryl	
	benzoyloxy)-1-phenyl-3-penten 36 mit CuBr·SMe2 und MeMgI/Et2O	123
14.3.4	Kontrollexperiment zum Einfluss des Kupfers im Verlauf der allylischen	
	Substitution: Umsetzung von (E)-2-[2-(Diphenylphosphanyl)-benzoyloxy]-1-	
	phenyl-3-penten 32 mit MeMgI/Et ₂ O	124
15	Untersuchungen zum Chiralitätstransfer der o-DPPB-dirigierten	
	allylischen Substitution	124
15.1	Synthese der cyclischen Substrate syn-/anti-39 und syn-45	124
15.1.1	Darstellung von 6-Isopropylcyclohex-2-en-1-on 44	124
15.1.2	Darstellung von (1R*,6S*)-6-Isopropyl-2-cyclohexen-1-ol anti-40 und	
	(1 <i>R</i> *,6 <i>R</i> *)-6-Isopropyl-2-cyclohexen-1-ol <i>syn</i> -40	126
15.1.3	Darstellung von (1 <i>R</i> *,6 <i>R</i> *)-6-Isopropyl-2-cyclohexen-1-phenylcarbamat <i>syn</i> -45	128
15.1.4	Darstellung von (1R*,6S*)-1-[2-(Diphenylphosphanyl)-benzoyloxy]-6-	
	isopropyl-2-cyclohexen anti-39	129
15.1.5	Darstellung von $(1R^*, 6R^*)$ -1-[2-(Diphenylphosphanyl)-benzoyloxy]-6-	
	isopropyl-2-cyclohexen syn-39	130

15.2	Umsetzung von syn-45 und anti/syn-39 in der allylischen Substitution	131
15.2.1	Darstellung von $(3R^*, 6R^*)$ -3-Isopropyl-6-methyl-1-cyclohexen syn-12 aus syn-45	131
15.2.2	Darstellung von (3 <i>R</i> *,6 <i>S</i> *)-3-Isopropyl-6-methyl-1-cyclohexen anti-12 aus anti-39	132
15.2.3	Darstellung von (3 <i>R</i> *,6 <i>R</i> *)-3-Isopropyl-6-methyl-1-cyclohexen <i>syn</i> -12 aus <i>syn</i> -39	133
15.3	Synthese der acyclischen Substrate $(-)-(E)$ - 52 und $(+)-(Z)$ - 52	134
15.3.1	Darstellung von (-)-(3 <i>S</i> , <i>E</i>)-1-Phenyl-1-penten-3-ol (-)-(<i>E</i>)- 55 und (3 <i>R</i> , <i>E</i>)-3	
	-Acetoxy-1-phenyl-1-penten (E)-56	134
15.3.2	Darstellung von (–)-(3 <i>S</i> , <i>E</i>)-3-[2-(Diphenylphosphanyl)-benzoyloxy]-	
	1-phenyl-1-penten (-)-(<i>E</i>)- 52 und <i>rac</i> -(<i>E</i>)- 52	135
15.3.3	Darstellung von <i>rac-(Z)</i> -1-Phenyl-1-penten-3-ol <i>rac-(Z)</i> -55	136
15.3.4	Darstellung von (+)-(3 <i>S</i> , <i>Z</i>)-1-Phenyl-1-penten-3-ol (+)-(<i>Z</i>)-55	136
15.3.5	Bestimmung der Stereoselektivität der Enzymresolution von rac-(Z)-55:	
	Darstellung von (+)-(S)-1-Phenyl-pentan-3-ol (+)-60	137
15.3.6	Darstellung von (+)-(3 <i>S</i> , <i>Z</i>)-3-[2-(Diphenylphosphanyl)-benzoyloxy]-1-phenyl	-
	1-penten $(+)$ - (Z) - 52 und <i>rac</i> - (Z) - 52	138
15.4	Umsetzung von $(-)$ - (E) - 52 und $(+)$ - (Z) - 52 in der allylischen Substitution	139
15.4.1	Darstellung von $(+)$ - (S,E) -2-Phenyl-3-hexen $(+)$ -53 aus $(-)$ - (E) -52 und	
	<i>rac</i> -53 aus <i>rac</i> -(<i>E</i>)-52	139
15.4.2	Optimierte Durchführung der allylischen Substitution an rac-(E)-52 zu rac-53	
	für die Reisolierung der o-DPPBA	140
15.4.3	Darstellung von (+)-(<i>R</i>)-2-Phenyl-propanol (+)- 57	142
15.4.4	Darstellung von (-)-(R,E)-2-Phenyl-3-hexen (-)-53 aus (+)-(Z)-52	
	und <i>rac</i> - 53 aus <i>rac</i> -(<i>Z</i>)- 52	143
16	Untersuchungen zum Reaktionsverlauf der o-DPPB-dirigierten,	
	allylischen Substitution	144
16.1	Darstellung des Kupferkomplexes $[(-)-(E)-52]_2$ CuBr	144
16.2	Darstellung einer 4:1-Mischung von $(-)$ - (E) - 52 und CuBr·SMe ₂ für	
	dynamische NMR-Experimente	145
17	Untersuchungen zum Einsatz verschiedener metallorganischer Nucleophile in der	
	o-DPPB-dirigierten allylischen Substitution	145
17.1	Versuchte Darstellung von 33 und 34 mittels zinkorganischer Reagenzien	145
17.2	Darstellung von 33 und 34 mittels manganorganische Reagenzien	146
17.3	Untersuchungen zur o-DPPB-dirigierten allylischen Substitution mit	
	verschiedenen Grignard-Reagenzien	148
17.3.1	Darstellung von (E)-4-Methyl-1-Phenyl-2-octen 64	148
17.3.2	Darstellung von (E)-4,5-Dimethyl-1-Phenyl-2-hexen 65	149
17.3.3	Darstellung von (E)-1,4-Diphenyl-2-penten 66	150
17.3.4	Darstellung von (E)-2,3-Dimethyl-1-phenyl-1,4-hexadien 67	151

17.3.5	Versuchte Darstellung von (E)-4-Methyl-7-phenyl-1,5-heptadien 244	154
18	Untersuchungen zur Kupferkatalyse in der o-DPPB-dirigierten,	
	allylischen Substitution	154
18.1	Umsetzung des o-DPPB-Esters 32 mit MeMgI und substöchiometrischen	
	Mengen CuBr·SMe ₂	154
18.2	Umsetzung der o-DPPB-Ester rac -(E)- 52 /(-)-(E)- 52 mit MeMgI	
	und substöchiometrischen Mengen CuBr·SMe2	157
19	o-DPPB-dirigierte allylische Substitution an verschiedenen	
	funktionalisierten sekundären Allyl-o-DPPB-Estern	158
19.1	Darstellung von (E)-3–[2-(Diphenylphosphanyl)-benzoyloxy]-hept-4-en-	
	carbonsäure- <i>tert</i> -butylester 103	158
19.2	Darstellung von (E)-3-[2-(Diphenylphosphanyl)-benzoyloxy)]-5-phenyl-	
	4-pentensäure- <i>tert</i> -butylester 104	159
19.3	Synthese der o-DPPB-Ester anti-128 und syn-128	160
19.3.1	Darstellung von (E) - $(2R^*, 3R^*)$ -3-Hydroxy-2-methyl-oct-4-ensäure- <i>tert</i> -butylester	
	anti-129	160
19.3.2	Darstellung von (E) - $(2R^*, 3R^*)$ -3-[2-(Diphenylphosphanyl)-benzoyl-oxy]- 2-	
	methyl-oct-4-ensäure- <i>tert</i> -butylester anti-128	161
19.3.3	Darstellung von (E)-3-Hydroxy-2-methyl-oct-4-ensäure- <i>tert</i> -butylester 129	162
19.3.4	Darstellung von (E)-2-Methyl-oct-4-en-3-onsäure- <i>tert</i> -butylester 131	163
19.3.5	Darstellung von (E) - $(2R^*, 3S^*)$ -3-Hydroxy-2-methyl-oct-4-ensäure- <i>tert</i> -butylester	
	syn-129	164
19.3.6	Darstellung von (E) - $(2R^*, 3S^*)$ -2-Methyl-3-[2-diphenylphosphanyl)-benzoyloxy]-	
	oct-4-ensäure- <i>tert</i> -butylester <i>syn</i> - 128	164
19.4	Synthese des <i>o</i> -DPPB-Esters (–)- 121	165
19.4.1	Darstellung von (4 <i>S</i> , <i>E</i>)-2,2-Dimethyl-[1,3]dioxolan-4-yl)-acrylsäure- <i>tert</i> -	
	butylester 125	165
19.4.2	Darstellung von (4 <i>S</i> , <i>E</i>)-4,5-Dihydroxy-pent-2-ensäure- <i>tert</i> -butylester 126	166
19.4.3	Darstellung von $(-)$ - $(4S,E)$ -5- $(tert$ -Butyldimethylsilanyloxy)-4-hydroxy-pent	
	-2-ensäure- <i>tert</i> -butylester (–)- 127	167
19.4.4	Darstellung von (–)-(4 <i>S</i> , <i>E</i>)-4-[2-(Diphenylphosphanyl)-benzoyloxy]-	5-
	(tert-butyldimethylsilanyloxy)-pent-2-ensäure-tert-butylester (-)-121	168
19.5	Synthese des o-DPPB-Esters 107	169
19.5.1	Darstellung von (E)-1-Phenyl-3-(trimethylsilanyl)-2-propen-1-ol 110	169
19.5.2	Darstellung von (E)-1-[2-(Diphenylphosphanyl)-benzoyloxy]-1-	
	phenyl-3-(trimethylsilanyl)-2-propen 107	170
19.6	Darstellung von 2,5-Dimethyl-4-[2-(diphenylphosphanyl)benzoyloxy]2-hexen 111	171

19.7	Umsetzung der o-DPPB-Ester 103, 104, anti-/syn-128, (-)-121, 107 und 111	
	in der allylischen Substitution	171
19.7.1	Darstellung von (E)-5-Methyl-oct-3-encarbonsäure-tert-butylester 114	171
19.7.2	Darstellung von (E)-5-Phenyl-3-hexensäure-tert-butylester 115	172
19.7.3	Darstellung von (E)-(2R*,5R*)-2,5-Dimethyloct-3-ensäure-tert-butylester	
	anti-149	174
19.7.4	Darstellung von (E)-(2R*,5S*)-2,5-Dimethyloct-3-ensäure-tert-butylester syn-149	175
19.7.5	Darstellung von (2R,E)-5-(tert-Butyldimethylsilanyloxy)-2-methyl-pent-3-	
	ensäure- <i>tert</i> -butylester (E)-147 und (2R,Z)-5-(<i>tert</i> -Butyldimethylsilanyloxy)-	
	2-methyl-pent-3-ensäure- <i>tert</i> -butylester (Z)-147	176
19.7.6	Darstellung von (E)-1-Phenyl-3-(trimethylsilanyl)-1-buten 116	178
19.7.7	AAV5: Allgemeine Arbeitsvorschrift zur o-DPPB-dirigierten allylischen	
	Substitution zum Aufbau quartärer Kohlenstoffzentren	179
19.7.8	Darstellung von (E)-2,2,5-Trimethyl-3-hexen 119	179
19.7.9	Darstellung von (E)-2,5,5-Trimethyl-3-nonen 120	180
20	o-DPPB-dirigierte allylische Substitution an primären Allylderivaten	181
20.1	Synthese der primären o-DPPB-Ester 87, 88, (E)-89 und (Z)-89	181
20.1.1	Darstellung von (E)-3-Cyclohexyl-1-[2-(diphenylphosphanyl)-benzoyloxy)]	
	-2-propen 87	181
20.1.2	Darstellung von (E)-1-[2-(Diphenylphosphanyl)-benzoyloxy]3-phenyl-2-propen 88	8 182
20.1.3	Darstellung von (2E)-1-[2-(Diphenylphosphanyl)-benzoyloxy]-3,7-dimethyl-	
	2,6-octadien (E)- 89	183
20.1.4	Darstellung von (2Z)-1-[2-(Diphenylphosphanyl)-benzoyloxy]-3,7-dimethyl-	
	2,6-octadien (Z)- 89	184
20.2	Umsetzung der primären o-DPPB-Ester 87, 88, (E)-89 und (Z)-89 in der	
	allylischen Substitution	185
20.2.1	Darstellung von 3-Cyclohexyl-1-buten 25 und (E)-1-Cyclohexyl-1-buten 90 aus 87	7 1 8 5
20.2.2	Darstellung von 3-Phenyl-1-buten 91 und (E)-1-Phenyl-1-buten 92 aus 88	187
20.2.3	Darstellung von 3,3,7-Trimethyl-1,6-octadien 93 aus (E)-89	188
20.2.4	Darstellung von 3,7-Dimethyl-3-ethyl-1,6-octadien 95	189
20.2.5	Darstellung von 2,6-Dimethyl-6-ethenyl-2-decen 97	191
21	Aufbau quartärer stereogener Kohlenstoffzentren mittels der o-DPPB-	
	dirigierten allylischen Substitution	192
21.1	Synthese der o-DPPB-Ester (-)-132 und rac-132	192
21.1.1	Darstellung von (+)-(<i>E</i> , <i>S</i>)-3-(2,2-Dimethyl[1,3]dioxalan-4-yl)-2-methylacryl-	
	säure-ethyl-ester (+)-135	192
21.1.2	Darstellung von (+)-(<i>E</i> , <i>S</i>)-3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-2-methyl-prop-2-	
	en-1-ol (+)- 136	193

21.1.3	Darstellung von $(+)$ - (E,S) -4-[3-(4-Methoxybenzyloxy)-2-methyl-1-propenyl]-	
	2.2-dimethyl-[1.3]dioxolan (+)- 137	194
21.1.4	Darstellung von (<i>E</i> , <i>S</i>)-5-(4-Methoxybenzyloxy)-4-methylpent-3-en-1.2-diol 138	195
21.1.5	Darstellung von $(+)$ - (E,S) -5- $(4$ -Methoxybenzyloxy)-1-tert-butyldimethylsilanyloxy	-
211110	4-methylpent-3-en-2-ol (+)-139	196
2116	Darstellung von $(-)$ - (F, S) -5- $(4$ -Methoxybenzyloxy)-1- <i>tert</i> -butyldimethylsilanyloxy	- -
21.1.0	2-[2-(dinhenvlnhosnhanvl)-benzovlovy]-4-methylpent-3-en (_)- 132	198
2117	Darstellung von $rac_{r}(F)$ -5-(4-Methovybenzylovy)-1- $tert$ -butyldimethylsilanyl-	170
21,1,7	oxy-4-methylpent-3-en-2-ol rac -139 und rac -(E)-5-(4-Methoxybenzyloxy)-	
	2- <i>tert</i> -butyldimethyl-silanyloxy-4-methylpent-3-en-1-ol <i>rac</i> -141	199
21.1.8	Darstellung von $rac(E)$ -5-(4-Methoxybenzyloxy)-1- $tert$ -butyldimethylsilanyloxy-	177
	2-[2-(diphenvlphosphanvl)-benzovloxy]-4-methvl-3-penten <i>rac</i> - 132 und <i>rac</i> -(E)-5-	-
	(4-Methoxybenzyl-oxy)-2- <i>tert</i> -butyldimethylsilanyloxy-1-[2-(diphenylphosphanyl))-
	benzoyl-oxy]-4-methyl-3-penten <i>rac</i> -142	200
21.2	Synthese der o-DPPB-Ester (-)-143 und rac-143	201
21.2.1	Darstellung von (S,E)-4,5-Dihydroxy-2-methyl-pent-2-en-	
	carbonsäureethylester 144	201
21.2.2	Darstellung von (-)-(<i>S</i> , <i>E</i>)-5-(<i>tert</i> -Butyldiphenylsilanyloxy)-4-hydroxy-2-methyl-	
	pent-2-ensäureethylester (–)-145	201
21.2.3	Darstellung von (-)-(S,E)-5-tert-Butyldiphenylsilanyloxy-4-[2-(diphenylphos-	
	phanyl)-benzoyloxy]-2-methyl-pent-2-ensäure-ethylester (-)-143	203
21.2.4	Darstellung von <i>rac-(E)-5-tert</i> -Butyl-diphenyl-silanyloxy-4-hydroxy-2-methyl-pen	t
	-2-ensäureethylester <i>rac</i> -145	204
21.2.5	Darstellung von rac-(E)-5-tert-Butyldiphenylsilanyloxy-4-[2-(diphenyl-	
	phosphanyl)-benzoyloxy]-2-methyl-pent-2-ensäureethylester rac-143	205
21.3	Umsetzung von (-)-132 und rac-132 in der allylischen Substitution	206
21.3.1	Darstellung von (E)-5-(4-Methoxybenzyloxy)-1-tert-butyldimethylsilanyloxy-	
	4,4-dimethylpent-2-en 142	206
21.3.2	Darstellung von (-)-(R,E)-4-(4-Methoxybenzyloxymethyl)-1-tert-butyl-	
	dimethylsilanyloxy-4-methyl-2-hexen (-)-153 und rac-153	207
21.3.3	Darstellung von (-)-(R,E)-1-tert-Butyldimethylsilanyloxy-4-	
	(4-Methoxy-benzyloxymethyl)-4-methyl-2-octen (-)-155 und rac-155	208
21.3.4	Darstellung von $(-)$ - (R,E) -1- <i>tert</i> -Butyldimethylsilanyloxy-4,5-dimethyl-	
	4-(4-methoxybenzyloxymethyl)-2-hexen (-)-154 und rac-154	209
21.3.5	Darstellung von (-)-(<i>R</i> , <i>E</i>)-4,5-Dimethyl-4-(4-Methoxy-benzyloxymethyl)-hex-2-	
	en-1-ol (-)-156 und rac-156	210
21.3.6	Darstellung von $(-)$ - (R,E) -1-tert-Butyldimethylsilanyloxy-4-	
	(4-methoxybenzyloxymethyl)-4-methyl-5-phenyl-2-penten (-)-159 und rac-159	211

21.3.7	Darstellung von (<i>E</i>)-1- <i>tert</i> -Butyldimethylsilanyloxy-4-(4-methoxybenzyloxy-	
	methyl)-4,5,5-trimethyl-2-hexen 157 , (<i>Z</i>)-2- <i>tert</i> -Butyl-(1- <i>tert</i> -butyldimethyl-	
	silanyl)-5-(4-methoxybenzyloxy)-4-methyl-3-penten-1-ol (Z)-158	
	und (<i>E</i>)-2- <i>tert</i> -Butyl-(1- <i>tert</i> -butyldimethylsilanyl)-5-(4-methoxybenzyloxy)	-
	4-methyl-3-penten-1-ol (<i>E</i>)- 158	212
21.4	Aufklärung der Stereochemie der <i>o</i> -DPPB-dirigierten allylischen Substitution an	
	(-)-132	214
21.4.1	Darstellung von (E,R) -5- $(tert$ -Butyldimethylsilanyloxy)-2-ethyl-2-methyl-pent-3-e	en
	-1-ol 164	214
21.4.2	Darstellung von (-)-(<i>E</i> , <i>R</i>)-5-(<i>tert</i> -Butyldimethylsilanyloxy)-2-ethyl-2-methyl-	
	pent-3-enal (-)-165	215
21.4.3	Darstellung von (-)-(<i>R</i> , <i>E</i>)-Methyl-5-(<i>tert</i> -butyldimethylsilanyloxy)-2-ethyl-2-	
	methyl-pent-3-enoat (-)-163	216
21.5	Umsetzung von (-)-143 und rac-143 in der allylischen Substitution	217
21.5.1	Darstellung von (-)-(R,E)-1-tert-Butyldiphenylsilanyloxy-4-carbonsäure-	
	ethylester-4-methyl-2-hexen (-)-168 und rac-168	217
21.5.2	Darstellung von (-)-(<i>R</i> , <i>E</i>)-1- <i>tert</i> -Butyldiphenylsilanyloxy-4-carbonsäure-	
	ethyl-ester-4-methyl-2-octen (-)-169 und rac-169	218
21.5.3	Darstellung von (–)-(<i>R</i> , <i>E</i>)-1- <i>tert</i> -Butyldiphenylsilanyloxy-4-carbonsäure-	
	ethyl-ester-4,5-dimethyl-2-hexen (–)-170 und rac-170	219
21.5.4	Darstellung von (R,E) -4-Carbonsäureethylester-4,5-dimethyl-2-hexen-1	-
	ol (<i>R</i>)-171 und <i>rac</i> -171	220
21.6	Stereodivergenz in der allylischen Substitution von o-DPPB-Derivaten	221
21.6.1	Darstellung von (–)-(<i>R</i> , <i>E</i>)-5- <i>tert</i> -Butyldiphenylsilanyloxy-4-[2-(di-	
	phenyl-phosphanyloxy)-benzoyloxy]-2-methyl-pent-2-ensäureethylester (–)- 172	221
21.6.2	Darstellung von $(+)$ - $(S.E)$ -1- <i>tert</i> -Butyldiphenvlsilanvloxy-4-carbonsäureethyl-	
	ester-4-methyl-2-octen (+)- 169	222
22	Anwendung der <i>o</i> -DPPB-dirigierten allvlischen Substitution in der Synthese	
	eines a Tocopherol Analogon	223
22.1		223
22.1	Allel DDDD Estars 107	222
22.1.1	AllyI-o-DPPB-Esters rac-197	223
22.1.1	Darstellung von 1-(2-Methyl-allyloxy)-prop-2-in 200	223
22.1.2	Darstellung von 1-(2-Methyl-allyloxy)-but-2-in 200	224
22.1.3	Darstellung von 2-Wietnyl-nept-1-en-5-in-4-ol $rac-201$	225
22.1.4	von 2 Mothyl hont 1 on 5 in 4 of yes 201	226
22.1.5	Volt 2-ivicilityi-flept-1-cfi-3-fl-4-of $rac-201$	220
ZZ.1.3	Darstenung von (<i>L</i>)-2-ivieinyi-nepta-1,3-dien-4-oi <i>rac</i> -198 aus Crotonaldehyd	220

22.1.6	Darstellung von (E)-4-[2-(Diphenylphosphanyl)-benzoyloxy]-2-methyl-hepta-	
	1,5-dien <i>rac</i> -197	227
22.1.7	Hydroformylierung von (E)-4-[2-(Diphenylphosphanyl)-benzoyloxy]-2-methyl-	
	hepta-1,5-dien <i>rac</i> -197	228
22.2	Untersuchungen zur Stereochemie der Hydroformylierung 1,2-disubstituierter	
	Allyl-o-DPPB-Ester	230
22.2.1	Hydroformylierung von (E)-2-[2-(Diphenylposphanyl)-benzoyloxy]-1-	
	phenyl-3-penten 32	230
22.2.2	Darstellung von rac-(2R*,3S*)-2-Ethyl-4-phenyl-1,3-butandiol 211	233
22.2.3	Darstellung von <i>rac-</i> (4 <i>R</i> *,5 <i>S</i> *)-4-Benzyl-5-ethyl-2-phenyl-[1,3]dioxan 212	234
22.3	Versuchter Syntheseweg über die Hydroformylierung des Alkin-Derivates 213	235
22.3.1	Darstellung von 4-[2-(Diphenylphosphanyl)-benzoyloxy]-2-methyl-hept-	
	1-en-5-in 213	235
22.3.2	Versuche zur Hydroformylierung von 4-[2-(Diphenylphosphanyl)-benzoyl-	
	oxy]-2-methyl-hept-1-en-5-in 213	236
22.4	Syntheseweg über ein Vinylsilan als Schutzgruppe für ein 1,2-disubstituiertes	
	Allyl-o-DPPB-System	238
22.4.1	Darstellung von Dimethylphenyl-prop-1-ynyl-silan 216	238
22.4.2	Darstellung von (Z)-2-(Dimethylphenylsilanyl)-but-2-en-1-ol 217	239
22.4.3	Darstellung von (Z)-2-(Dimethylphenylsilanyl)-but-2-en-1-al 218	240
22.4.4	Darstellung von (<i>Z</i>)-5-(Dimethylphenylsilanyl)-2-methyl-hept-1,5-dien-4-ol 219	241
22.4.5	Darstellung von (Z)-5-(Dimethylphenylsilanyl)-4-[2-[diphenyl-	
	phosphanyl)-benzoyloxy]-2-methyl-hept-1,5-dien 220	242
22.4.6	Darstellung von $(3R^*, 5S^*)$ - (Z) -6- $(Dimethylphenylsilanyl)$ -5-	
	[2-(diphenyl-phosphanyl)-benzoyloxy]-3-methyl-6-octenal 221	243
22.4.7	Darstellung von 5-(2-Methylpropyl)sulfanyl-1-phenyl-1 <i>H</i> -tetrazol 249	244
22.4.8	Darstellung von 5-(2-Methylpropyl)sulfonyl-1-phenyl-1 <i>H</i> -tetrazol 222	245
22.4.9	Darstellung von <i>rac</i> -(2 <i>Z</i> ,8 <i>E</i> ,4 <i>R</i> *,6 <i>S</i> *)-6,10-Dimethyl-3-(Dimethylphenylsilanyl)-	
	4-[2-(diphenylphosphanyl)-benzoyloxy]-undeca-2,8-dien 224	246
22.4.1	0 Darstellung von (2 <i>E</i> ,8 <i>E</i> ,4 <i>R</i> *,6 <i>S</i> *)-6,10-Dimethyl-4-[2-(diphenyl-	
	phosphanyl)-benzoyloxy]-undeca-2,8-dien 193	248
22.4.1	1 Darstellung von 1-Brom-3-Cyclohexylpropan 228	250
22.4.1	2 Darstellung von 3-Cyclohexylpropylmagnesiumbromid 195	250
22.4.1	3 Darstellung von (3 <i>E</i> ,8 <i>E</i> ,6 <i>R</i> *,10 <i>S</i> *)-13-Cyclohexyl-2,6,10-	
	trimethyl-trideca-3,8-dien 230	251
22.4.1	4 Darstellung von 13-Cyclohexyl-2,6,10-trimethyl-tridecan 231	253
23	o-DPPB-dirigierte propargylische Substitution	255
23.1.1	Darstellung von rac-3-[2-(Diphenylphosphanyl)-benzoyloxy]-1-phenyl-	
	1-pentin <i>rac</i> -234	255

23.1.2	Darstellung von rac-1-[2-(Diphenylphosphanyl)-benzoyloxy]-	
	1-phenyl-3-(trimethylsilanyl)-2-propin 235	256
23.2	Umsetzung von <i>rac</i> -234 und 235	256
23.2.1	AAV6: Allgemeine Arbeitsvorschrift zur o-DPPB-dirigierten	
	propargylischen Substitution	256
23.2.2	Darstellung von rac-2-Phenyl –2,3-Hexadien rac-236	257
23.2.3	Darstellung von rac-5-Phenyl –3,4-Nonadien rac-237	258
23.2.4	Darstellung von rac-1-Phenyl-3-(trimethylsilanyl)-1,2-butadien rac-238	259
23.3	Untersuchungen zum Chiralitätstransfer der o-DPPB-dirigierten,	
	propargylischen Substitution	260
23.3.1	Darstellung von 17 β -[2-(Diphenylphosphanyl)-benzoyloxy)]-mestranol β -242	260
23.3.2	Darstellung von (-)-(S)-1-Phenyl-1-pentin-3-ol (-)-59	261
23.3.3	Darstellung von (-)-(S)-3-[2-(Diphenylphosphanyl)-benzoyloxy]-1-phenyl-	
	1-pentin (–)- 234	261
23.4	Umsetzung von β -242 und (–)-234 in der propargylischen Substitution	262
23.4.1	Darstellung von 21β-Methyl-3-methoxy-19-nor-1,3,5(10),17(20),	
	$20(21)$ -pregnapentaen β - 241	262
23.4.2	Darstellung von (aS)-2-Phenyl-2,3-Hexadien (aS)-236	263
23.4.3	Darstellung von (aR)-2-Phenyl–2,3-Hexadien (aR)-236	264
С	Literaturverzeichnis	266
D	Anhang	275
D1	Kristallographische Daten von [(-)-(<i>E</i>)- 52] ₂ CuBr	275
D2	Formelverzeichnis	284
Danks	sagung	289