

Peter Kutne (Autor)

Zeitaufgelöste Untersuchungen zum intramolekularen Schwingungsenergiefluss durch molekulare Ketten

https://cuvillier.de/de/shop/publications/3243

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

Abbildungsverzeichnis Tabellenverzeichnis						
2	Untersuchte Substanzen					
	2.1	Photo	physikalische Eigenschaften der Chromophore	8		
	2.2	Die Sı	ıbstanzgruppen	10		
		2.2.1	Derivate mit einer Kette aus 7 Bindungen	10		
		2.2.2	Derivate mit einer Kette aus 4 Bindungen	11		
		2.2.3	Derivat mit einer Kette aus 2 Bindungen	13		
		2.2.4	Derivat mit einer Kette aus einer Bindung	13		
		2.2.5	Derivate ohne zweites Chromophor	15		
	2.3	Strukt	turen im Grundzustand	16		
3	Theoretische Grundlagen					
	3.1	Intern	nolekularer Energietransfer	21		
	3.2	Intran	nolekulare Schwingungsenergieumverteilung (IVR)	24		
		3.2.1	IVR im Bild der "zeroth order states"	25		
		3.2.2	Modelle für IVR-Prozesse	28		
		3.2.3	Der Schweratom-Effekt	30		
	3.3	Ein ei	nfaches Wärmeleitungsmodell	32		
		3.3.1	Berücksichtigung der Wärmekapazität der Kette	36		
		3.3.2	Berücksichtigung der Wärmeleitung in der Kette	39		
	3.4	Wärm	eleitung im Phononenbild	42		
	3.5	Die M	ethode der Transienten Absorption	46		
		3.5.1	Eichung anhand thermisch heißer Spektren für Azulen	48		
		3.5.2	Eichung anhand thermisch heißer Spektren für Anthrazen	51		
4	Ехр	erimen	teller Teil	53		
	-	Übers		53		
	4.2	Optiso	cher Aufbau	53		

		4.2.1 Der Laseroszillator	54
		4.2.1 Der Laseroszmator	
		· · · · · · · · · · · · · · · · · · ·	
		4.2.4 Der Kompressor	
	4.3	1 1	
	4.3	Die Hochdruckanlage	
		0 0	
	4.4	0 0	
	$\frac{4.4}{4.5}$	Synchronisation des Experiments	
	4.6	Die Signalverarbeitung	
	4.0	Messung der temperaturabhängigen Spektren von Anthrazen	
	4.7	verwendete Losungsmitter	70
5	Aus	wertung	71
	5.1	Berücksichtigung der Inneren Konversion und der Zeitauflösung	71
	5.2	Berechnung der mittleren Schwingungsenergie	72
	5.3	Berücksichtigung der solvatochromen Verschiebung	74
		5.3.1 Lösungsmittelabhängigkeit der solvatochromen Verschiebung	74
		5.3.2 Dichteabhängigkeit der solvatochromen Verschiebung	75
	5.4	Das Auswertungsverfahren	76
		5.4.1 Berechnung des Wärmeleitungsmodells	76
		5.4.2 Die biexponentielle Anpassung	76
6	Erg	ebnisse	79
	6.1	Bestimmung der Energietransferparameter	81
		6.1.1 Auswertung der Signale	
		6.1.2 Der harmonische Anteil am Energiefluss	
		6.1.3 Auswertung mit harmonischem Anteil	87
	6.2	Der Einfluss der Kettenlänge	91
	6.3	Der Einfluss von Heteroatomen in der Brücke	95
	6.4	Intermolekularer Schwingungsenergietransfer ins Lösungsmittel	96
7	Diel	kussion	99
•	7.1	Der harmonische Anteil am Energiefluss	
	7.2	Die intramolekulare Schwingungsenergieumverteilung	
	7.3	Der Einfluss von Heteroatomen	
	7.4	Der Intermolekulare Schwingungsenergietransfer (VET)	
	7.5	Ausblick	
1:	torat	urverzeichnis	107
ᆫᆝ	ıcıal	ui vei zeiciiiii3	TOI