
Introduction

Lagrangian singularities first appeared in the work of Arnold and his
school around 1980. Arnold recognized their importance in relation with
problems from mathematical physics, in particular, variational problems
with constraints ([Arn82]). Most prominently, the so-called obstacle
problem leads to the open swallowtail, a singular subvariety in a cer-
tain space of polynomials in one variable of fixed degree, which comes
equipped with a natural symplectic form. Some years later, Givental
studied immersions of lagrangian surfaces in four space ([Giv86]), also
called isotropic mappings and discovered a generic mapping the image
of which is called open Whitney umbrella. More recently, lagrangian
subvarieties associated to any Frobenius manifold have been studied ex-
tensively by Hertling [Her02]. Singular subspaces of symplectic manifolds
also arise in algebraic analysis, the characteristic variety of a holonomic
D-module is a lagrangian subvariety. These few examples show that
Lagrangian singularities occur at rather different places in mathemat-
ics, as subspaces of holomorphic symplectic manifolds as well as in the
C∞-setting. There are also classes of lagrangian submanifolds involving
real and complex structures, namely the so-called special lagrangians are
subspaces of Calabi-Yau manifolds such that the Kähler form as well as
the imaginary part of the holomorphic form of maximal degree vanish
on them. Singularities of such special lagrangians play an important
role in the (conjectural) version of mirror symmetry as developed by
Strominger, Yau and Zaslow (see, e.g., [Joy00]).

The central topic of this thesis is the problem how lagrangian sin-
gularities behave under deformations. Partial aspects of this question
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can already be found in the work of Givental ([Giv88]). However, the
deformations that are considered in that paper are only perturbations
of the symplectic structure which fixes the lagrangian subspace. In or-
der to take into account deformations of the space itself, we are led to
use rather sophisticated tools from abstract deformation theory, which
have been developed since the sixties (quite independently from classical
singularity theory) by Grothendieck, Schlessinger, Illusie, Artin, Deligne
and others. In this approach, the main idea is to associate to any object
that one wants to deform a functor on a certain category (which is the
category of base spaces of the families under consideration) and to study
its representability, at least in a somewhat weaker sense (existence of
a so-called “hull”). The classical notion of semi-universal deformations
(e.g., for functions with isolated critical points) is a special case of this
more general principle.

To make this deformation theory program work, the first step is to
define the appropriate functor. Hence we need to know what exactly is
meant by a Lagrangian deformation. We will give in the sequel an infor-
mal definition, postponing the exact formulation to the second chapter
(definition 2.4 on page 54). Given any germ (L, 0) ⊂ (M, 0) of a reduced
(complex, say) analytic subspace L inside a (holomorphic) symplectic
manifold M with defining ideal I ⊂ OM,0, the question arises how to
detect whether L is lagrangian only in terms of the ideal I. It turns out
that a necessary condition is that I is stable under the Poisson bracket,
i.e., {I, I} ⊂ I. Such ideals are called involutive. In addition, the space
L must have the right dimension, i.e., half of the dimension of the man-
ifold M . If we want to deform this situation, the first thing to realize is
that the ambient manifold should deform trivially and that the deformed
space LS will be embedded in M × S, where S is the parameter space.
The condition to impose is that for each s ∈ S, the fibre Ls ⊂ M × {s}
is a lagrangian subvariety. In terms of the defining ideal, this simply
means that if IS ⊂ OM×S,0 is the deformed ideal (the ideal defining LS
in M × S), we require that {IS , IS} ⊂ IS . Here the bracket is a bracket
on the product M ×S, this is no longer a symplectic but a Poisson man-
ifold (i.e, the bracket is degenerate). Again, we need a condition on the
dimension of the fibres. This is automatic if we require the deformation
to be flat as usual for singularities. Then all fibres will have the same
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dimension, namely, half of the dimension of M . Given a deformation
of LS ⊂ M × S � S, the natural question arises whether it can be
trivialized. In the case of flat deformations of (arbitrary) singularities,
a trivialization is given by a vector field of the ambient manifold. This
is still true for a lagrangian deformation, however, as we are working
in the symplectic category, this vector field must be hamiltonian. The
description just given already suffices to define our lagrangian deforma-
tion functor, namely, it is a functor from an appropriate category of
base spaces into the category of sets which associates to a space S the
set of isomorphism classes of lagrangian deformations over S modulo
isomorphisms coming from Hamiltonian vector fields.

Given a deformation functor, there are in general two things one is
interested in. The first one is the existence of a hull (a formally semi-
universal deformation). This is a deformation over a space Spec(R)
where R is a quotient of a formal power series ring. One of the funda-
mental results of Schlessinger is that such a hull exists if the space of
deformations over Spec(k[ε]/ε2) (called the tangent space of the functor)
is a finite-dimensional vector space over k. The second point is to study
the structure of the hull R, in particular, to know whether it is smooth
or not. This is known as the problem of obstructions, namely, it con-
sists in detecting whether for a deformation over an Artin space Spec(A)
and a surjection B � A there is a deformation over Spec(B) inducing
the given deformation over A. The most conceptual way to treat these
two problems together is to find what is called a “controlling differen-
tial graded Lie algebra” (L, d, [ , ]). This roughly means that the space
of deformations over a ring A is identified with the subset of L1 ⊗ mA

consisting of solutions of the following equation, called Maurer-Cartan
equation:

dη +
1
2
[η, η] = 0

In particular, this implies that the first cohomologyH1(L) is the tangent
space of the functor and H2(L) contains in some sense “all” obstructions.

One case where this theory has been successfully applied is the prob-
lem of flat deformations of a singularity (X, 0), that is, flat deformations
of the analytic algebra OX,0 (there is of course a corresponding the-
ory in the algebraic category). Here a dg-Lie algebra, constructed from
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the so-called (analytic) cotangent complex exists. It is a complex of
OX,0-modules together with a graded Lie bracket which makes it into a
differential graded Lie algebra. Very roughly, it is defined as the complex
of graded derivations of a special resolution of OX (called the resolvent)
where the bracket is the commutator of derivations and the differential
is the bracket with the differential of the resolvent (which is a derivation
of degree one).

For lagrangian singularities, the situation is more difficult, as one has
to take into account both the flatness and the lagrangian condition. We
construct in this work for any lagrangian singularity (L, 0) ⊂ (M, 0) a
complex of OL-modules (denoted by C•L,0) together with a C-linear dif-
ferential whose first cohomology is identified with the tangent space of
the lagrangian deformation functor. The second cohomology contains
information on the obstruction theory of (L, 0). However, this complex
does not control the deformation problem in the above sense, the main
reason is that it is not equipped with a bracket making it into a differ-
ential graded Lie algebra. It should be seen as an approximation of an
object still to be found.

The complex C•L,0 turns out to be related to the theory of differen-
tial modules. This somewhat surprising fact can be explained by the
formalism of Lie-algebroids. A Lie algebroid on a space X is a module
over OX together with a Lie algebra structure, such that elements act as
derivations of OX . For any lagrangian singularity, the conormal module
I/I2 has a natural structure of a Lie algebroid, where the Lie bracket
and the action on OL,0 is essentially given by the Poisson bracket. There
is a natural construction of a (non-commutative) ring of differential op-
erators from a given Lie algebroid. This construction generalizes the
usual ring of differential operators, which comes in the same way from
the tangent sheaf of a smooth variety X viewed as a (rather trivial) Lie
algebroid. The complex C•L,0 is the analogue of the de Rham complex
in D-module theory (therefore we call it lagrangian de Rham complex).
The second main result of this work is a version of Kashiwara’s con-
structibility theorem for the lagrangian de Rham complex. In ordinary
D-modules theory, this result states that for a holonomic DX -module
M, the cohomology of the de Rham complex DR•(M,OX) form con-
structible sheaves of finite-dimensional vector spaces on X . We prove
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a similar result for the complex C•L under a geometric condition on the
lagrangian variety L. This implies in particular by using Schlessinger’s
theorem the existence of a semi-universal deformation (in the formal
sense) for lagrangian singularities satisfying this condition. The relation
to the de Rham complex of the space L also yields a sort of µ = τ
theorem for smoothable lagrangian singularities.

A major problem concerning the deformation spaces of lagrangian
singularities was to know how to calculate them effectively. In fact, the
description of the tangent space of the lagrangian deformation functor
as the first cohomology of C•L,0 is a priori not sufficient to compute this
space. The main difficulty lies in the non-linearity of the differential.
Hopefully, a direct calculation might be possible using the differential
structure and the theory of standard bases over general non-commutative
algebras. This subject is however still in its infancy. Meanwhile, we can
offer an algorithm for reduced quasi-homogenous lagrangian surfaces. In
that case the computation simplifies to the calculation of the cohomol-
ogy of a smaller complex, which is supported on the singular locus of
L. Then the differential structure is much easier to understand, it re-
duces essentially to a vector bundle over the complex line together with
a meromorphic connection. Classical results from the theory of ordinary
differential equations allow us to calculate the space of horizontal sec-
tions of this bundle, which gives the cohomology we are interested in.
As a byproduct, we obtain a set of rational numbers, the so called spec-
tral numbers which are invariants attached to the lagrangian surface.
They are in some sense an analogue to the spectrum of a hypersurface
singularity with isolated critical points, which is an important ingredi-
ent to define a mixed Hodge structure on the cohomology of the Milnor
fibre of the singularity. Quite surprisingly, our lagrangian spectral num-
bers share a symmetry property with the classical spectrum, at least in
all examples we have calculated. For the spectrum of a function with
isolated critical points, the symmetry is a deep result using K. Saito’s
higher residue pairings. For the lagrangian spectrum, the symmetry has
not yet been shown. We explain in the text some ideas and speculations
which might lead to a rigorous proof.

There is another deformation problem related to lagrangian singulari-
ties, namely, deformations of so-called isotropic mappings. Suppose that
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there is a map from a smooth variety into a symplectic manifold such
that the image is a lagrangian subvariety. Then one might ask about the
deformations of this map requiring that the image stays lagrangian. This
problem turns out to be more difficult to attack than deformations of
lagrangian subvarieties, in fact, there is not yet a systematic way to com-
pute these deformation spaces. Nevertheless, we can calculate them for
simple examples, like plane curves and isotropic mappings from a plane
into four space of rank one. In general, isotropic mappings of corank
one are of rather special type, e.g., their deformation functor is smooth,
which is not true in general. The calculation of the infinitesimal defor-
mation space of isotropic mappings from a plane into four space shows
an astonishing relation between the dimension of this space and other
(more classical) invariants attached to the map. We conjecture that this
relation holds true in general.

We will give in the following paragraphs a short overview on the
content of this thesis. The first chapter describes in some detail the
geometry of different classes of lagrangian singularities. Apart from the
examples mentioned above we discuss generating families, integrable sys-
tems, the µ/2-stratum, spectral covers of Frobenius manifolds and sin-
gularities of special lagrangian varieties. We present for each of these
classes one example as concrete as possible (mainly the case of a surface
in four-space) by calculating a set of defining equations f1, . . . , fk, the
commutator {fi, fj} of these equations, the structure of the singular lo-
cus etc. Despite the fact that these examples are well-known, this type of
calculations (using computer algebra) is difficult to find in the literature.

The second chapter introduces the problem of deformations in the la-
grangian context by first studying two very simple examples, which are
in some sense opposite to each other: smooth real lagrangian submani-
folds of C∞-manifolds and germs of plane curves. Here it is elementary
to calculate infinitesimal deformation spaces, these are classical results.
Then we introduce a quite general deformation functor, associated to
any mapping i : X → M from an analytic space to a symplectic mani-
fold such that i∗ω vanishes. For a lagrangian subvariety, one can take i
to be the inclusion to obtain the functor mentioned above. On the other
hand, if X is smooth and i arbitrary then we get the functor of defor-
mations of an isotropic mapping. These two cases are treated in detail
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in the following two chapters. The third one starts by introducing Lie
algebroids and modules over them. We define the de Rham complex of a
module over a Lie algebroid. Then we prove that the conormal module
of a lagrangian subvariety L ⊂ M has the structure of a Lie algebroid.
We study simple properties of the lagrangian de Rham complex C•L, in
particular, we compare it to several complexes of differential forms on
the variety L. We introduce the whole theory directly in a relative set-
ting, that is, we define Lie algebroids over morphisms of analytic spaces.
This situation arises naturally by considering a family L ↪→M ×S � S
of lagrangian varieties over a base S. The next step is to prove that the
first cohomology of the lagrangian de Rham complex is isomorphic to the
tangent space of the lagrangian deformation functor (again, this is done
in a relative setting, considering infinitesimal deformations of the fam-
ily). We state and show a variant of a T 1-lifting theorem for lagrangian
singularities which gives the smoothness of the deformation functors in
some cases. Finally, we discuss a slightly modified deformation problem
concerning integrable systems. Here we have a more complete result,
we can construct from the lagrangian de Rham complex a differential
graded Lie algebra controlling deformations of integrable systems.

The second part of the third chapter contains the proof of the con-
structibility theorem. It follows the proof of Kashiwara’s theorem for
D-modules, namely, we first show that the cohomology sheaves of the
complex C•L are locally constant on strata consisting of points of L with
constant embedding dimension. The second step is to show that at each
point p ∈ L, the stalk of a cohomology sheaf is a finite dimensional vector
space. This part uses an idea from functional analysis (the Kiehl-Verdier
theorem) which was already the key ingredient for similar finiteness re-
sults in different situations (e.g., [BG80]). The main geometric argument
for both parts of this proof is the following: Let p ∈ L a point and con-
sider the germ (L, p) of L at p, which is of dimension n. Its embedding
dimension might vary in between n and 2n. If it is strictly smaller than
2n, then the variety is locally around p a product L = L′×C, where C is
a smooth curve, and L′ is a lagrangian subspace in a symplectic manifold
of dimension 2n − 2. This is already found in [Giv88]. Now the main
point is that such a lagrangian product is rather rigid, it can only be
deformed as a product by deforming the factor L′. We call this principle
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propagation of deformations. Globally, it implies that if the points of
L of maximal embedding dimension are isolated (this is essentially the
assumption for our constructibility theorem), then the cohomology of C•L
over a small neighborhood of such a point will not change if we restrict
to a smaller neighborhood. By the theorem of Kiehl-Verdier its stalk
at this point must be finite-dimensional. Lagrangian singularities hav-
ing isolated points with maximal embedding dimension therefore have
a (formally) semi-universal deformation. Hence singularities satisfying
this condition are the lagrangian analogue to isolated singularities. We
finish the second chapter by explaining our method of computing the
cohomology of C•L for a quasi-homogeneous surface. We introduce the
spectral numbers and make some conjectures concerning their symmetry.

The last chapter treats isotropic mappings. After introducing basic
properties of their deformation spaces, we calculate the tangent space
of its deformation functor for monomial curves and for maps having
as its image a lagrangian singularity which can be decomposed into a
lagrangian singularity of smaller dimension and a smooth space. Here
there is no such rigidity theorem as for deformations of subvarieties.
Therefore in general versal deformations of isotropic maps will exist only
if the critical values are isolated. We discuss in detail one particular
isotropic map, the normalization of the open Whitney umbrella. It was
already known that this map is rigid. Moreover, there is the following
theorem, stated (and proved in particular cases) by Givental ([Giv86])
and shown in general by Ishikawa ([Ish92]): Consider the space of germs
of isotropic maps form Rn into R2n, equipped with the Whitney C∞-
topology. Then this space contains a dense open subset of maps which
are equivalent (modulo diffeomorphisms of Rn and symplectomorphisms
of R2n) to a generalized open Whitney umbrella (which is the usual
one for n = 2). This result is briefly reviewed. We finish this chapter
by calculating the dimension of the infinitesimal lagrangian deformation
space as well as the δ-invariant, the usual infinitesimal deformation space
and the dimension of the module of relative differential forms for corank
one maps from R2 into R4. We conjecture a linear relation between some
of these numbers.

We have included two appendices in this thesis. The first (rather
large) one reviews the concepts of abstract deformation theory that are
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used in the text. As there is not yet a standard reference for this the-
ory, it seems appropriate to collect the results we need. We discuss first
deformation functors and categories fibred in groupoids as well as differ-
ential graded Lie algebras. We define the notion of a controlling dg-Lie
algebra. Finally, the so called T 1-lifting theorem is stated and proved.
This is a tool to deduce smoothness of a functor from a certain lifting
property of its relative tangent spaces.

In the second part of this appendix we describe basic examples of con-
trolling dg-Lie algebras. These include deformations of complex struc-
tures, associative algebras and flat deformations of analytic algebras.
The latter involves the cotangent complex, which we review in some
detail.

The second appendix is a very brief introduction to the theory of
differential modules. The aim is to define notions and principles which
are used (mainly while developing the analogous versions for general
Lie algebroids) in the text. We define the ring DX , modules over it,
good filtrations and coherent D-modules, the characteristic variety and
holonomic D-modules. We prove Kashiwara’s constructibility theorem
in complete analogy with our proof for the lagrangian de Rham complex.

Let us finish this introduction by listing some problems and questions
related to lagrangian singularities which are still open or only partially
answered. We already mentioned the problem of finding a controlling dg-
Lie algebra for the functor of deformations of a lagrangian subvariety.
It should incorporate the cotangent complex in some way because our
lagrangian deformations are flat by definition. On the other hand, even
the question whether for an ideal which is involutive up to order n there is
a lift to an ideal involutive up to order n+1 cannot be answered directly
from the complex C•L. There should be a graded bracket on this complex
derived from the Poisson bracket which gives the obstruction map. The
difficulty comes from the fact that the Poisson bracket (defined on OM )
does not descend to OL. See theorem 3.20 on page 74 for more details.

The symmetry of the spectrum for a lagrangian surface singularity is
probably related to the existence of a naturally given bilinear form on a
meromorphic bundle, which comes from the quotient of the lagrangian
de Rham complex by the de Rham complex of ordinary differential forms
on the variety. This quotient is supported on the singular locus, and we
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expect that it can be identified with a bundle the fibre of which at a point
is isomorphic to the cohomology of the Milnor fibre of the transversal sin-
gularity at this point. However, this bundle must be defined canonically,
without choosing local coordinates. This is still to be done.

Another open question concerns the structure of the category of mod-
ules over the Lie algebroid I/I2 (the conormal module). At least in the
case when this module is locally free (i.e., for complete intersections),
things are easier to handle and it is likely that the ring of generalized
differential operators constructed from I/I2 is of finite homological di-
mension. In principle, the corresponding proof for ordinary D-modules
can be adapted to this more general situation. However, the crucial in-
gredient is a dimension estimate using the Bernstein inequality for the
dimension of the characteristic variety. The characteristic variety of a
DX -module is a subspace of the cotangent bundle T ∗X . In our case,
there is an analogue of the cotangent bundle, namely, a linear space
S over the variety L and the algebra OS is equipped with a Poisson
bracket. But S is itself singular (because L is singular), so it is not a
symplectic manifold and it might be difficult to estimate the dimension
of the characteristic variety.

Returning to deformation theory, it should be noticed that although
we define all objects globally, i.e., for a lagrangian subspace of a sym-
plectic manifold, our results are local in nature. We study essentially
deformations of germs (or small representatives of them). The global de-
formation theory is probably also controlled by the lagrangian de Rham
complex, e.g., the infinitesimal deformations are given by the first hyper-
cohomology of this complex. This is however not so easy to see, much like
in the case of flat deformations, where rather heavy machinery (simplicial
resolutions of complex spaces) is needed to study global deformations.

Let L → S be a lagrangian deformation over a base S where OS,0

is an analytic algebra. Suppose that it is infinitesimal versal, i.e., the
tangent space of S at zero is isomorphic to the tangent space of the
deformation functor. In this situation one would like to know whether
the family is versal in the strong sense, i.e., whether every deformation is
equivalent by an analytic change of coordinate to a deformation induced
from L → S. For flat deformations, a semi-universal deformation in this
sense exists if the singularities are isolated, this is Grauert’s theorem. It
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uses approximation techniques in order to obtain convergent solutions.
For lagrangian singularities, there is not yet such a complete picture. We
can give a stability theorem for a family as above. This result is due to
M. Garay ([Gar02]) in the case of complete intersections. We introduce
a Kodaira-Spencer map to apply it in general. However, the convergency
of versal deformations in general is unknown. A simple use of Grauert’s
approximation theorem will not be sufficient, because we need that the
analytic coordinate change stays symplectic.

A last remark concerning the comparison of the different categories
we are working in seems in order. In application (involving the classes of
examples that we treat in the first chapter), one encounters both sym-
plectic manifolds of class C∞ and holomorphic symplectic manifolds. In
the real case one may consider C∞- or analytic lagrangian submanifolds.
In order to give a unified treatment, we adopt the following terminology:
Symplectic manifolds over K which denotes either R or C are C∞- or
holomorphic symplectic manifolds, respectively. We work only with an-
alytic lagrangian submanifolds in both cases. For some of our results we
need to restrict to the complex case, in particular, for the constructibility
theorem. One can always consider the complexification of a real analytic
lagrangian subspace. However, this may introduce additional conditions
of the complex part on the variety not visible over R.


