	Inhaltsverzeichnis Abkürzungsverzeichnis	VI
1.	Einleitung	1
1.1	Stabilisierung von Makromolekülen	1
1.2	Natürliche Umgebungen von Proteinen	4
1.3	Künstliche Umgebungen von Proteinen	5
1.4	Ziel der vorliegenden Arbeit	6
2.	Material und Methoden	8
2.1	Organismen und Plasmide	8
2.2	Verwendete Oligonukleotide	9
2.3	Nährmedien	10
2.4	Zellanzucht	12
2.4.1	Anzucht von E. coli	12
2.4.2	Stammkulturen	12
2.5	Bestimmung von Wachstumsparametern	12
2.6	Herstellung zellfreier Extrakte	13
2.6.1	Zellernte	13
2.6.2	Zellaufschluss	13
2.7	Proteinbestimmung	14
2.8	Methoden für das Arbeiten mit DNA	14
2.8.1	Behandlung von Geräten und Lösungen	14
2.8.2	Präparation genomischer DNA	15
2.8.3	Präparation von Plasmid-DNA	16
2.8.3.1	Analytische Plasmidisolierung aus E. coli	16
2.8.3.2	Präparative Plasmidisolierung	17
2.8.4	Reinheitskontrolle und Konzentrationsbestimmung von	17
	DNA	
2.8.5	In vitro-Amplifizierung von DNA-Fragmenten durch PCR	18
286	Phenoleytraktion und Ethanolnräzinitation	20

2.8.7	Verdau von dsDNA mit Restriktionsendonukleasen	21
2.8.8	Dephosphorylierung von Vektor-DNA	21
2.8.9	Agarose-Gelelektrophorese	22
2.8.9.1	Analytische und präparative Agarose-Gelelektrophorese	23
2.8.9.2	Isolierung von dsDNA aus präparativen Agarose-Gelen	24
2.8.10	Klonierung rekombinanter DNA in <i>E. coli</i>	24
2.8.10.1	Ligation von dsDNA-Fragmenten	24
2.8.10.2	Herstellung kompetenter E. coli-Zellen	25
2.8.10.3	Transformation von E. coli-Zellen nach HANAHAN (1983)	26
2.8.10.4	Kolonie-PCR-Screening	27
2.8.10.5	Schnell-Screen von Plasmiden aus E. coli (Cracking)	27
2.8.10.6	DNA-Sequenzierung	28
2.9	Anreicherung und Aufreinigung rekombinanter	29
	Proteine	
2.9.1	Expression der rekombinanten Proteine	30
2.9.2	Aufreinigung der Proteine über Affinitätschromatographie	30
2.9.3	Dialyse von Proteinen	31
2.10	SDS-Polyacrylamid-Gelelektrophorese nach LAEMMLI	32
	(1970)	
2.11	COOMASSIE-Färbung von Proteinen	34
2.12	Kopplung von Proteinen an Liposomen	35
2.12.1	Herstellung von Liposomen durch Ultraschall (BARINAGA-	35
	REMENTERIA RAMIREZ et al., 2000; mod.)	
2.12.2	Kopplung der AmyA und GUK1 über Streptavidin oder	36
	Strep-Tactin (Linkerproteine) an Liposomen	
2.13	Elektronenmikroskopie	37
2.13.1	Elektronenmikroskopische Trägernetze	37
2.13.2	Kohlefolien	38
2.13.3	Negativkontrastierung nach VALENTINE et al. (1968)	38
2.13.4	Elektronenmikroskopische Abbildungen	39
2.13.5	Größenbestimmung von Liposomen	39
2.14	Enzymaktivitätstests	40
2.14.1	α-Amylase (AmyA) Enzymassay	40

2.14.2	Optisch-enzymatischer Test der Guanylatkinase	42
	(AGARWAL et al., 1978)	
2.15	Chemikalien, Biochemikalien und Enzyme	44
3.	Experimente und Ergebnisse	47
3.1	Herstellung der rekombinanten Plasmide	47
3.1.1	Klonierung der <i>amyA</i>	48
3.1.1.1	Ergebnis der Sequenzierung der amyA	50
3.1.2	Klonierung der <i>guk</i> 1.1	53
3.1.2.1	Ergebnis der Sequenzierung von	56
	pJC20 <i>[StrepN]guk</i> 1.1[1.3]	
3.2	Expression und Aufreinigung der rekombinanten	57
	Proteine	
3.2.1	Expression der AmyA	57
3.2.2	Aufreinigung der AmyA mittels Affinitätschromatographie	58
3.2.3	Expression der GUK1	59
3.2.4	Aufreinigung der GUK1 mittels Affinitätschromatographie	60
3.3	Aktivitätstests der rekombinanten Proteine	61
3.3.1	Enzymaktivität der AmyA	62
3.3.1.1	Struktur der rekombinanten AmyA	63
3.3.2	Enzymaktivität der GUK1	65
3.4	Herstellung von Liposomen (DPPC bzw. DPPC/N-	65
	Biotinyl-Cap-PE)	
3.5	Kopplungsexperimente mit der rekombinanten AmyA	66
3.5.1	Experimente zur Kopplung der AmyA über Streptavidin an	66
	DPPC-Liposomen	
3.5.1.1	Nachweis der Kopplung (AmyA/Streptavidin/DPPC)	67
3.5.1.2	Aktivitätstests zur Kopplung AmyA/Streptavidin/DPPC	69
3.5.1.3	Einfluss von Harnstoff	74
3.5.1.4	Einfluss von Betain	76
3.5.2	Experimente zur Kopplung der AmyA über <i>Strep</i> -Tactin an DPPC-Liposomen	77

3.5.2.1	Nachweis der Kopplung (AmyA/Strep-Tactin/DPPC)	78
3.5.2.2	Aktivitätstests zur Kopplung AmyA/Strep-Tactin/DPPC	78
3.5.3	Kopplung der AmyA über Streptavidin an DMPC-	80
	Liposomen	
3.6	Kopplungsexperimente mit der GUK1	82
3.6.1	Kopplung der GUK1 über Streptavidin an DPPC-	83
	Liposomen	
3.6.1.1	Nachweis der Kopplung (GUK1/Streptavidin/DPPC)	83
3.6.1.2	Aktivitätstests zur Kopplung GUK1/Streptavidin/DPPC	84
3.6.2	Kopplung der GUK1 über Streptavidin an DMPC-	86
	Liposomen	
3.6.3	Vergleich DPPC und DMPC mit Streptavidin	87
3.6.4	Kopplung der GUK1 über Strep-Tactin an DPPC-	90
	Liposomen	
3.6.4.1	Nachweis der Kopplung (GUK1/Strep-Tactin/DPPC)	90
3.6.4.2	Aktivitätstests zur Kopplung GUK1/Strep-Tactin/DPPC	91
3.6.5	Kopplung der GUK1 über Strep-Tactin an DMPC-	93
	Liposomen	
3.6.6	Vergleich DPPC und DMPC mit Strep-Tactin	95
3.6.7	Einfluss von Harnstoff	96
3.6.8	Einfluss von Betain	97
3.7	Kinetik der GUK1 im Vergleich	99
3.8	Stabilitätstests der rekombinanten Enzyme	99
4.	Diskussion	102
4.1	Beschaffenheit des verwendeten	102
	Kopplungsmechanismus sowie der Matrix	
4.1.1	Aufreinigung der rekombinanten Enzyme AmyA und	103
	GUK1	
4.1.2	Kopplungsmechanismus	104
4.1.3	Kopplungsmatrix	105
4.2	AmyA-Struktur	107

4.2.1	Orientierung der AmyA (im AmyA-Linkermolekül-Komplex)	111
	an Liposomen	
4.3	Struktur und Orientierung der GUK1	113
4.4	Kopplung und Aktivität der AmyA und GUK1	114
4.4.1	Einfluss der Kopplung auf die Enzymaktivität der AmyA	114
4.4.2	Einfluss der Kopplung auf die Enzymaktivität der GUK1	116
4.4.2.1	Einfluss von Liposomenmembranen auf die Aktivität der	117
	GUK1 und AmyA	
4.5	Einfluss von Harnstoff	122
4.6	Einfluss von Betain	126
4.7	Einflüsse einer definierten chemisch-physikalischen	129
	Umgebung	
4.8	Lipidmembranen als Schalter	130
5.	Zusammenfassung	132
6.	Literatur	135