

Nurtjahjo Dwi Sasongko (Autor) Increase of erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid

https://cuvillier.de/de/shop/publications/3260

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Table of contents

			Page	
	List	of Abbreviations	iv	
1	Introduction			
	1.1	Importance of rapeseed oils	1	
	1.2	Biosynthesis of fatty acids in <i>Brassica napus</i> L.	3	
	1.3	Genetic approaches to modify fatty acid content		
		in rapeseed oil	6	
	1.4	Development of rapeseed cultivars		
		with increased erucic acid content	10	
	1.5	Utilisation of near infrared reflectance spectroscopy		
		(NIRS) in breeding for quality traits	12	
	1.6	Aims of the study	13	
2	Material and Methods			
	2.1	Plant material	15	
	2.2	Methodology	16	
	2.2.1	Crossing of the parental plants	16	
	2.2.2	Analysis for fatty acid content in F ₁ seeds		
		and preparation for F ₁ plants	16	
	2.2.3	Selection of F_2 seeds for the field experiment	17	
	2.2.4	Field experiment with selected F_2 seds	18	
	2.2.5	Development of NIRS calibrations for the determination		
		of the fatty acid content in single seeds	18	
	2.2.6	Gas liquid chromatography (GLC)	21	
	2.2.7	Data analysis	23	

3 Results

3.1	Analysis of fatty acids segregation	25
3.1.1	Fatty acid content of parental and F_1 seeds of the cross	
	HOAR DH's x cv. Maplus	25
3.1.2	Fatty acid content of F2 seeds of the cross	
	HOAR DH's x cv. Maplus	27
3.1.3	Fatty acid content of parental and F_1 seeds of the cross	
	R239 x #3411	34
3.1.4	Fatty acid content of F2 seeds of the cross	
	R239 x #3411	35
3.2	Development of NIRS calibrations for fatty acid content	
	in singleseed rape seeds	38
3.2.1	Development of NIRS calibrations for fatty acid content	
	in F_2 seeds of the cross HOAR DH's x cv. Maplus	38
3.2.2	Prediction of fatty acid content in F_2 seeds of the cross	
	HOAR DH's x cv. Maplus	41
3.2.3	Development of NIRS calibration for fatty acid content	
	in F_2 seeds of the cross R239 x #3411	44
3.2.4	Prediction of fatty acid content in F_2 seeds of the cross	
	R239 x #3411	45
3.3	Fatty acid content of F_3 seeds of the cross	
	HOAR DH's x cv. Maplus	46
3.3.1	Fatty acid content in EEEE class of the cross	
	HOAR DH's x cv. Maplus	49
Discussion		
4.1	Segregation of fatty acid content in F ₂ seeds	57
4.2	Development of singleseeds NIRS calibrations for fatty acids	60

	4.3	Prediction of erucic acid content in F ₂ seeds by NIRS	62
	4.4	Fatty acid content in F ₃ seeds obtained from	
		the selected F ₂ plants 63	
	4.5	High Erucic High Oleic (HEHO) - a new type of oil?	68
	4.6	Further attempts to increase C22:1 content	70
		in <i>Brassica napus</i> L.	
5	Sum	mary	71
6	References		74
7	Acknowledgements		88
8	Appendix		