
Introduction

Let H and K be Krein spaces, let A and D be selfadjoint operators in H
and K, respectively, with nonempty resolvent sets and let B be a bounded
operator in L(H,K). For all λ in the resolvent set ρ(D) we define an operator
function

T (λ) = λ − A + B+(D − λ)−1B,(0.1)

where B+ denotes the Krein space adjoint of B. Then for all λ ∈ ρ(D), for
which 0 ∈ ρ(T (λ)), the operator function −T−1 can be represented in the
form

−T (λ)−1 = P1(M− λ)−1I1(0.2)

where M is given by the operator matrix

M =
[

A B+

B D

]
(0.3)

in H ×K, I1 is the embedding of H in H ×K and P1 the projection on the
first component in H×K.

In this thesis we consider operator functions T which can formally be writ-
ten as in (0.1). We relax the boundedness condition on B. The last term
on the right of (0.1) is replaced by a term of a similar form which is a rela-
tively compact perturbation in form sense with respect to A. This compact-
ness assumption includes the case when A has a compact resolvent and B is
bounded.

Analogously to the case of a bounded operator B, the operator function
−T−1 can then be represented as in (0.2) where the operator M arises from(

A 0
0 D

)
by a relatively compact perturbation in form sense.

In this thesis we express relatively compact perturbations in form sense
with the help of operators in riggings. In Chapter 1 we review some facts on
riggings in Krein spaces. We also give a brief introduction to the theory of
definitizable and locally definitizable selfadjoint operators in Krein spaces. In
particular we discuss relatively form–compact perturbations of definitizable
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selfadjoint operators and compact perturbations of fundamentally reducible
operators in Krein spaces.

Our main objective is to describe relations between spectral properties of
the holomorphic operator function T and the operator M. In Section 2.1 we
introduce the notions of resolvent set, spectrum, point spectrum and Jordan
chains of the operator function T . Then (cf. Section 2.3) a point λ where
the function T is holomorphic, that is λ ∈ ρ(D), belongs to the resolvent set
of T if and only if λ belongs to the resolvent set of the operator M. The
same equivalence holds for the point spectrum. Special attention is given to
the spectrum of positive and negative type of T , resp. M. As the domain
of the operator T (λ) may depend on λ, we define the sign types of spectral
points of T (i.e. spectral points of positive or negative type of T ) via some
rational function f(T (λ)) of T (λ) which has values in L(H). This definition
generalizes the usual one for L(H)-valued functions (see [LMaM2]). It turns
out that the sign types of spectral points of T can be characterized by the
sign types of an extension of T to an operator of the space of positive norm to
the space of negative norm of some rigging which has a domain independent
of λ. It then follows that they coincide with the sign types with respect to
M (Sections 2.1–2.3).

In Sections 2.4 and 2.5 we assume that A and D are definitizable selfad-
joint operators and fulfil some further conditions such that by a perturbation
result from [J3] the operator M is definitizable. The sign types of spectral
points of T , first defined only for points λ of holomorphy of T , that is for
λ ∈ ρ(D) ∩ IR, can be extended to arbitrary real λ by making use of the
(boundary behaviour near IR of the) function −T−1, which is a so–called
definitizable operator function ([J4]). For points outside of ρ(D) ∩ IR the
so defined sign type coincides with that of M if M satisfies some minimal-
ity condition (Proposition 2.18). Lemma 2.19 provides a simple criterion for
this minimality. Similar relations hold if the sign types are replaced by the
so–called intervals of type π+ and type π− (Proposition 2.18, Theorem 2.22).

Making an additional assumption on A and D and using a minimal rep-
resenting operator for an Nκ–function we determine a minimal representing
operator for −T−1 such that this operator is unitarily equivalent to M, if
M is minimal (Theorem 2.17, Proposition 2.18). Here unitary equivalence
is understood with respect to the inner products of the Krein spaces. For
non–minimal M there is a local variant of this fact (Theorem 2.20).

Connections between T and M in the case where H and −K are Hilbert
spaces have been studied in the articles [LMeM], [FM], [AL], [MS]. In these
articles, in the Krein space setting, it is always assumed that σ(A)∩ σ(D) is
empty or a finite set and, on the other hand, that either the resolvent of A is
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compact or B is, in some sense, small with respect to A and D. In the pub-
lications mentioned above also completeness problems for the eigenfunctions
and associated functions of T were investigated. In the present thesis we do
not deal with completeness questions for T .

In [LMeM] T (λ) is the operator in L2([0, 1]) corresponding to the differen-
tial expression

y′′ + λy +
q

u − λ
y,(0.4)

and the boundary conditions

y(0) = y(1) = 0.(0.5)

Here q and u belong to L∞([0, 1]) and ess sup q < 0. Then

M :=
[

− d2

dx2 −√−q√−q u

]
in G := L2([0, 1]) × L2([0, 1]) is of the form (0.3) and satisfies (0.2) (here G
is considered as a Krein space with fundamental symmetry J =

(
1 0
0 −1

)
). In

[LMeM] it is proved that M is a definitizable selfadjoint operator and that,
if u is a step function, the eigenvectors and associated vectors of M form a
Riesz basis.

In Chapter 3 we apply the results of Chapter 2 to Sturm–Liouville ope-
rators which are similar to (0.4). In Chapter 3 the relations between the sign
types of T and M considered in Chapter 2 play an essential role.

In Section 3.1 we consider the case that T (λ) is the operator in L2([−1, 1])
corresponding to the differential expression

py′′ + λy +
n+∑
j=1

q+
j

u+
j − λ

y +
n−∑
j=1

q−j
u−

j − λ
y,(0.6)

with λ ∈ C , on the interval I := [−1, 1] with boundary conditions

y(−1) = y(1) = 0.(0.7)

The function p is identically equal to 1 or a simple indefinite weight. The
functions q±j , u±

j are real valued measurable functions, q+
j ≥ 0, j = 1, . . . , n+,

q−j ≤ 0, j = 1, . . . , n−, a.e. such that q±j (1 + |u±
j |)−1 ∈ L1(I), j = 1, . . . , n±.

Let D be the diagonal matrix multiplication operator

D = diag(u+
1 , . . . , u+

n+
, u−

1 , . . . , u−
n−),
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in K := L2(I)n+ × L2(I)n− , where K is considered as a Krein space with
fundamental symmetry J =

(
1 0
0 −1

)
. Then the operator M arises from

(−p d2

dx2 ) × D by a relatively compact perturbation in form sense and sat-
isfies (0.2)(for a definition of M see page 59). It is a consequence of Section
2.3 that a point λ ∈ ρ(D) belongs to the resolvent set (point spectrum, spec-
trum of positive type, spectrum of negative type) of T if and only if it belongs
to the resolvent set (point spectrum, spectrum of positive type, spectrum of
negative type) of M.

Under some additional assumptions on the functions u±
j , j = 1, . . . , n±

(which, in essence, imply that D is a definitizable selfadjoint operator in K
such that D has no finite critical points), it follows that M is a definitiz-
able selfadjoint operator and T (λ)−1 is a definitizable operator function. In
addition we prove a simple criterion for the minimality of M with respect
to −T−1 (cf. Theorem 3.3). If M is minimal with respect to −T−1, then,
by the considerations of Section 2.5, an open subset of IR is of positive type
(negative type, type π+, type π−) with respect to M if and only if it is of the
same type with respect to −T−1. Finally, if we assume that all the functions
u±

j , j = 1, . . . , n±, are step functions, we can show that there exists a Riesz
basis consisting of eigenvectors and associated vectors of M.

In Section 3.2 T (λ) is again the operator corresponding to the expression
(0.6). Now we assume that p ≡ 1 and I = [0,∞). Instead of (0.7) we consider
the boundary condition

y(0) = 0.

In this case we obtain the same relations between the various kinds of spectra
of T and M as in Section 3.1. Moreover, under some additional assumptions
on the functions u±

j , j = 1, . . . , n±, the operator M is a definitizable operator
and, again, T (λ)−1 is a definitizable operator function. In Proposition 3.7
we give an example for a situation where results on the absence of positive
eigenvalues for Sturm–Liouville operators can be used, in combination with
the relations between the spectra of T and M, to exclude critical points of
M on the positive half–axis.

In Section 3.3 T (λ)y is given by (0.4) on the interval I = [−1, 1] with the
boundary condition (0.7). In contrast to [LMeM], we allow q to change its
sign. For simplicity, we assume that q is a real valued piecewise continuous
function and that u is a real valued measurable function. Now, roughly
speaking, q(u−λ)−1 can be considered as a sum of two quotients q+(u+−λ)−1

and q−(u− − λ)−1, where the first one is defined on Δ+ := {x ∈ I : q(x) >
0}, the second one on Δ− := {x ∈ I : q(x) < 0}, and q± and u± are
the restrictions of q and u to Δ±. Then M arises from (− d2

dx2 ) × u+ × u−
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by a compact perturbation (in the resolvent sense). It follows that M is
definitizable over the set

C \ (({∞} ∪ σe(u+)) ∩ σe(u−)).

If the functions q and u belong to C1(I) such that u′ > 0 and q has finitely
many zeros, we are able to prove that M is a definitizable operator in the
space L2(I) × L2(Δ+) × L2(Δ−).

Finally, we consider the case of the half–axis, where T (λ) is given by (0.4)
with boundary condition y(0) = 0 (cf. Section 3.4). Then the operator M is
definitizable over C \ {([0,∞]∪ σe(u+))∩ σe(u−)} and, if q and u fulfil some
further conditions, M is a definitizable operator. Moreover, the absence of
eigenvalues of T can be used to locate the position of critical points of M.


