

Alexander Paul (Autor)

Detektion von Proteinen an funktionalisierten Ultramikroelektroden

https://cuvillier.de/de/shop/publications/3394

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhalt

	Abkürzungen	i
I.	Einleitung	1
I.1	Biosensoren	1
I.2	Elektrochemische Detektion auf Mikrochips	7
I.3	Oberflächenmodifikation von Transduktoren	10
I.4	Antikörper und Phagen-Display	12
I.5	Lebensmitteltoxine	15
I.6	Zielsetzung	19
II.	Material und Methoden	21
II.1	Material	21
II.1.1	Chemikalien und Bioreagenzien	21
II.1.2	Puffer und Medien	22
II.1.3	Bakterienstämme, Vektoren und Phagen-Display-Zubehör	24
II.1.4	Geräte	24
II.2	Methoden	26
II.2.1	Biochip-Technologie	26
II.2.1.	1 Fertigstellung von Biochips	28
II.2.1.	Belegung von Biochips mit Oberflächenmolekülen	29
II.2.1.	3 Ermittlung von Belegungsdichten	29
II.2.1.	Immobilisierung von Biomolekülen auf modifizierten Chipoberflächen	30
II.2.1.	5 Immobilisierung von Biomolekülen an Magnetpartikeln	30
II.2.1.	6 Durchführung chipbasierter Immunoassays	32
II.2.2	Chemische Synthesen	34
II.2.2.	Darstellung von thiomodifizierter Carboxymethyl-Cellulose (t-CMC)	34
II.2.2.	2 Darstellung von thiomodifizierten Dendrimeren	35
II.2.2.	2.1 Darstellung von Dendrimer 4	35
II.2.2.	Darstellung von Dendrimer 5	35
II.2.2.	Darstellung von p-Aminophenyl-α-D-galaktopyranosid (pAP-Gal)	36
II.2.2.	4 HPLC-Reinigung	36

II 2 3 Molel	ularbiologische Methoden	37
II.2.3.1	mRNA-Isolierung aus Soja (<i>Glycine max</i>)	37
II.2.3.1 II.2.3.2	cDNA-Synthese mittels RT-PCR	38
II.2.3.2 II.2.3.3	Plasmid-DNA-Isolierung	39
II.2.3.4	PCR	39
II.2.3.5	Agarose-Gelelektrophorese	40
II.2.3.6	Isolierung von DNA aus Gelen oder DNA-Gemischen	40
II.2.3.7	Konzentrationsbestimmung von DNA	41
II.2.3.7 II.2.3.8	Enzymatische DNA-Modifizierung	41
	·	42
II.2.3.9 II.2.3.10	DNA-Sequenzierung	44
	Isolierung chromosomaler DNA aus Hefe-Zellen	44
II.2.4.1	n-Display-Technologie	
	Darstellung von M13K07- und KM13-Helferphagen	45
II.2.4.2	Titerbestimmung von M13-Phagen	46
II.2.4.3	Darstellung von scFv-präsentierenden, rekombinanten Phagen	46
II.2.4.4	Amplifikation, Selektion und Reinfektion einer Antikörper-Bibliothek	47
II.2.4.5	Vervielfältigung von angereicherten Bibliotheken	48
II.2.4.6	Poly- und monoklonale Phagen-ELISA	49
II.2.4.7	Infektion von Non-Supressor-Zellinien	49
II.2.5 Expre	ssion und proteinchemische Methoden	50
II.2.5.1	Herstellung elektrokompetenter <i>E.coli</i> -Zellen und Transformation	50
II.2.5.2	Herstellung elektrokompetenter P. pastoris-Zellen und Transformation	50
II.2.5.3	Lagerung transformierter Bakterien- oder Hefe-Zellen	51
II.2.5.4	Proteinexpression in Bakterien (E. coli)	51
II.2.5.4.1	Präparation von periplasmatischen Extrakten	52
II.2.5.5	Proteinexpression in Hefen (P. pastoris)	52
II.2.5.6	Proteinreinigung mittels IMAC	53
II.2.5.6.1	Proteinreinigung mittels IMAC an einer FPLC-Anlage	53
II.2.5.7	Konzentrationsbestimmung von Proteinlösungen	54
II.2.5.8	SDS-Polyacrylamid-Gelelektrophorese (PAGE)	54
II.2.5.9	Färbung von PAGE-Gelen	55
II.2.5.10	Trocknung von PAGE-Gelen	56
II.2.5.11	Elektrophoretischer Proteintransfer (Western-Blot)	56
II.2.5.12	Immunofärbung	56

II.2.5.13		Biotinylierung von IgG- und scFv-Antikörpern	57
II.2.5.14		ELISA	57
III.	Ergeb	nisse	59
III.1	Modifi	zierung von Chipoberflächen	59
III.1.1	Meßbe	ereich verwendeter Biochips	59
III.1.2	Selbsta	anordnende Schichten organischer Thiolverbindungen	59
III.1.3	Modifi	zierung mit Polymer-Matrices	63
III.1.3	.1	Synthese und Charakterisierung thiomodifizierter Carboxymethyl-	
		Cellulose (t-CMC)	66
III.1.4	Modifi	zierung mit Dendrimeren	67
III.1.4	.1	Synthese von Dendrimer 4	68
III.1.4	.2	Synthese von Dendrimer 5	70
III.1.4	.3	Charakterisierung von dendrimerbeschichteten Chipoberflächen	71
III.2	Herste	llung von Assay-Komponenten	71
III.2.1	Enzym	ne e	72
III.2.1	.1	β-D-Galaktosidase	73
III.2.1	.2	Alkalische Phosphatase	75
III.2.1	.3	α-D-Galaktosidase	76
III.2.1	.3.1	Klonierung und Expression von α-D-Galaktosidase aus Soja	
		(Glycine max)	76
III.2.1	.3.2	mRNA-Isolierung aus Soja und cDNA-Synthese	78
III.2.1	.3.3	Amplifikation und Klonierung von α-D-Galaktosidase-cDNA	78
III.2.1	.3.4	Expression von α-D-Galaktosidase in <i>P. pastoris</i> und Reinigung	81
III.2.1	.3.5	Synthese von p-Aminophenyl-α-D-galaktopyranosid (pAP-Gal)	82
III.2.1	.3.6	Elektrochemische Enzymaktivitätsmessungen	83
III.2.2	Antikö	rper	84
III.2.2	.1	Polyklonale Antikörper	85
III.2.2	.1.1	Quantifizierung von immobilisierten Antikörpern	85
III.2.2	.1.2	Überprüfung der Komponenten für polyklonale Lysozym-Sand-	
		wich-ELISA-Analysen	85
III.2.2	.2	Darstellung von scFv-Fragmenten gegen Toxine	86
III.2.2	.2.1	Selektion von scFv-Fragmenten gegen BoNT A und SEB	87
III.2.2	.2.2	Analyse und Charakterisierung selektierter Klone	87

III.2.2	.2.3 Sandwich-Selektion an gerichtet immobilisierten Toxinen und	
	Charakterisierung	91
III.2.2	.2.4 Überprüfung der Anti-Toxin-Seren und -scFv	94
III.3.	Optimierung des Modell-Systems	97
III.3.1	Elektrochemische Immunoassays an 2D- und 3D-Schichten	97
III.3.1	.1 Lysozym-Sandwich-ELISA	97
III.3.2	Oberflächenvergrößerung durch Nutzung von Magnetpartikeln	99
III.3.2	.1 Immobilisierungsbedingungen für Antikörper an Epoxypartikeln	100
III.3.2	.2 Lysozym-Nachweis on-chip an Magnetpartikeln	101
III.3.2	.3 Magnetpartikel-Vergleich	103
III.3.2	.4 Optimierung on-chip-Assays	104
III.3.2	.5 Einsatz monoklonaler Fängerantikörper	106
III.4	Toxin-Nachweis mittels Sandwich-ELISA	108
IV.	Diskussion	110
IV.1	Modifizierung von Münzmetalloberflächen	110
IV.1.1	Oberflächenmoleküle für zweidimensionale Schichten	111
IV.1.2	Oberflächenmoleküle für dreidimensionale Schichten	112
IV.2	Assay-Komponenten	115
IV.2.1	α-D-Galaktosidase	116
IV.2.2	Herstellung von Anti-Toxin-Antikörpern	118
IV.3	Modell-Assay	120
IV.4	Toxin-Assay	124
V.	Zusammenfassung	125
VI.	Summary	127
VII.	Literatur	129
VIII.	Anhang	147
VIII.1	cDNA-Sequenzen	147
VIII.2	Oligonukleotid-Sequenzen	151
VIII.3	Vektorkarten	152