Table of contents

1.	Introduction	1	
1.1.	Mitochondria and energy metabolism	1	
1.2.	Cytochrome c oxidase		
	1.2.1. Structure of cytochrome c oxidase	1	
	1.2.2. Catalytic activity of cytochrome c oxidase	4	
	1.2.3. Nucleotide binding sites of cytochrome c oxidase	6	
	1.2.4. Allosteric ATP-inhibition of cytochrome c oxidase	6	
	1.2.5. Reversible cAMP-dependent phosphorylation of cytochrome c oxidase	7	
	1.2.6. Variable H^+/e^- stoichiometries in cytochrome c oxidase	8	
	1.2.7 High ATP/ADP-ratios decrease the H ⁺ /e ⁻ stoichiometry of only heart		
	cvtochrome c oxidase	10	
1.3.	Regulation of cell respiration	10	
1101	1.3.1. The first mechanism of respiratory control	10	
	1.3.2. The second mechanism of respiratory control	11	
1.4.	Aims of the present dissertation	13	
2.	Materials	14	
2.1.	Tissues	14	
2.2.	Bacteria and vector	14	
2.3.	Primers	14	
2.4.	Apparatuses	14	
2.5.	Kits	15	
2.6.	Chromatographic materials	15	
2.7.	Membranes	15	
2.8.	Chemicals	15	
2.9.	Lipids, fatty acids, and derivatives	15	
2.10.	Detergents	16	
2.11.	Dyes	16	
2.12.	Antibodies	16	
2.13.	Nucleotides	16	
2.14.	Substrates	16	
2.15.	Uncouplers and reductants	16	
2.16.	Enzymes	17	
2.17.	Antibiotic and inhibitor	17	
3.	Methods	18	
3.1.	Molecular biological methods	18	
	3.1.1. General methods	18	
	Preparation of LB medium	18	
	Agarose gel electrophoreis of DNA	19	
	DNA precipitation by Na-acetate and ethanol	19	
	Photometric quantitation of DNA and RNA	20	
	3.1.2. RNA preparation	20	
	General instruction for RNA preparation	20	
	Purification of total RNA	20	
	3.1.3. Complementary DNA (cDNA) preparation	21	
	Reverse transcription (RT)	21	

		Purification of cDNA after RT-PCR	22
	3.1.4.	Polymerase Chain Reaction (PCR)	23
		Standard-PCR	23
		Hot-Start-PCR	24
		Touch-Down-PCR	24
		3'-rapid amplification of cDNA ends-PCR (3'-RACE-PCR)	24
	3.1.5.	Preparation of DNA for cloning	26
		Elution of DNA from agarose gel	26
		Refilling of dsDNA-ends with Klenow DNA polymerase	26
		Phosphorylation of DNA	27
	3.1.6.	Preparation of vector plasmid for cloning	27
	217	Dephosphorylation with shrimp alkaline phosphatase	29
	3.1.7.	Preparation of competent cells for electrotransformation	29
	3.1.8.	Ligation of DNA with plasmid	29
	3.1.9.	Transfer of plasmid DNA into <i>E. coli</i> by electroporation	30
	3.1.10	Rapid preparation of plasmid DNA by the TENS method	30
	3.1.11	Digestion of plasmid DNA with Pvu II	31
2.2	3.1.12 Dratai	. DNA sequencing	31
3.2.		I chemical methods	32 22
	3.2.1.	Purification of sytochrome c ovidase by the Triton X 100 method	33 34
	3.2.2.	Extraction by Triton V 114 and Triton V 100	34
		DEAE-Senhagel anion exchange chromatography	35
		Purification of cytochrome c oxidase by fractionated	55
		ammonium sulfate precipitation	35
	323	Isolation of cytochrome c oxidase by the cholate method	36
	5.2.5.	Isolation of Keilin-Hartree particles	36
		Isolation of cytochrome c oxidase	36
	3.2.4.	Spectrophotometric determination of cytochrome concentrations	39
		Difference spectrum	39
		Absolute spectrum	39
	3.2.5.	Determination of protein concentration	40
	3.2.6.	SDS-polyacrylamide gel electrophoresis (SDS-PAGE)	41
		Staining of protein bands with Coomassie Blue	42
	3.2.7.	Labelling of SH-groups in cytochrome c oxidase with DACM	42
	3.2.8.	Electroblotting of proteins onto nitrocellulose and PVDF membrane	43
		Staining with amido black and Coomassie Blue	44
	3.2.9.	N-terminal and internal amino acid sequencing	45
3.3.	Measu	rement of cytochrome c oxidase activity	46
	3.3.1.	Preparation of ferri- and ferro-cytochrome c solutions	46
	3.3.2.	Purification of asolectin and XAD-2	46
	3.3.3.	Preparation of cytochrome c oxidase with regulatory properties	47
	3.3.4.	Reconstitution of cytochrome c oxidase for activity measurements	47
	3.3.5.	Phosphorylation and dephosphorylation of cytochrome c oxidase	48
	3.3.6.	Measurement of enzyme activity by the polarographical method	48
		Activity measurement of cytochrome c oxidase	
		with regulatory properties	49
		Activity measurement of reconstituted cytochrome c oxidase	49
a 4		Determination of respiratory control ratio (RCR)	49
3.4.	Measu	irement of proton translocation	50
	3.4.1.	Reconstitution of cytochrome c oxidase for	

	proton translocation measurements	50
	3.4.2. Proton translocation measurements using a pH electrode	51
	3.4.3. Proton translocation measurement using a stopped-flow spectrophotometer	51
	3.4.4. Proton conductivity measurement of proteoliposomes	52
3.5.	Immunochemical methods	52
	Colorimetric detection of immunoreactivity in	
	Western Blots using alkaline phosphatase	52
4.	Results	54
4.1.	Search for the cDNA of a new isoform of subunit IV (IV-2)	54
	4.1.1. Cloning and sequencing of subunit IV cDNA from rat	56
	4.1.2. Cloning and sequencing of subunit IV cDNA from turkey	58
4.2.	Search for cytochrome c oxidase subunit isoforms in bovine and turkey	66
	4.2.1. Comparison of bovine cytochrome c oxidase subunit patterns	66
	4.2.2. Searching for subunit IV-2 in bovine lung cytochrome c oxidase	68
	4.2.3. Comparison of subunit patterns of turkey cytochrome c oxidases	71
	4.2.4. Identification of subunit VIaL isoform in turkey liver, heart,	
	and skeletal muscle	73
4.3.	Phosphorylation of cytochrome c oxidase subunits	75
	4.3.1. Identification of phosphorylated subunits of bovine heart	
	cytochrome c oxidase with antibodies against phosphoserine	
	and phosphothreonine	75
	4.3.2. Possible phosphorylation sites in the subunits of bovine heart	
	cytochrome c oxidase	77
4.4.	Regulation of cytochrome c oxidase activity by cAMP-dependent phosphorylation	
	4.4.1. The allosteric ATP-inhibition of cytochrome c oxidase is protected	
	by KF and EGTA in the isolation media	81
	4.4.2. Effect of cAMP-dependent phosphorylation on the allosteric	
	ATP-inhibition of cytochrome c oxidase isolated with KF and EGTA	83
	4.4.3. TMPD abolishes the allosteric ATP-inhibition of cytochrome c oxidase	84
	4.4.4. Incubation with protein phosphatase 1 releases the allosteric	
	ATP-inhibition of cytochrome c oxidase	85
	4.4.5. Time dependent induction of allosteric ATP-inhibiton of	
	cytochrome c oxidase by cAMP-dependent phosphorylation	86
	4.4.6. Allosteric ATP-inhibiton of cytochrome c oxidase is reversibly	
	turned on by cAMP-dependent phosphorylation and turned off by	~ -
	dephosphorylation	87
	4.4.7. The allosteric ATP inhibiton is obtained with cytochrome c oxidases	0.0
	from bovine heart, kidney, and testis	88
	4.4.8. Allosteric ATP-inhibiton of cytochrome c oxidase is induced by	0.0
	phosphorylation from the cytosolic side	90
	4.4.9. Proposed phosphorylation site for allosteric ATP-inhibition	91
4.5.	Proton translocation in eukaryotic cytochrome c oxidase has a variable H ⁺ /e ⁻	
	stoichiometry	94
	4.5.1. Cardiolipin increases the H ⁺ /e ⁻ stoichiometry of reconstituted	
	cytochrome c oxidase from bovine kidney but not from bovine heart	94
	4.5.2. Specific decrease of H^+/e^- stoichiometry by palmitate of cytochrome c	
	oxidase from kidney but not from heart	101
	4.5.3. Palmitate increases the controlled respiration of	
	kidney cytochrome c oxidase	106

5.	Discussion	110
5.1.	Search for cytochrome c oxidase subunit IV-2 isoform	110
5.2.	Phosphorylation of Ser ⁴⁴¹ in subunit I of cytochrome c oxidase induces allosteric ATP-inhibition	111
5.3.	Regulation of oxidative phosphorylation by allosteric ATP-inhibition	
	of cytochrome c oxidase	116
5.4.	Palmitate decreases the H ⁺ /e ⁻ stoichiometry of	
	bovine kidney cytochrome c oxidase	119
6.	Summary	124
7.	Reference	125
8.	Abbreviations	139
9.	Acknowledgments	141