

Ingrid Maria Nijholt (Autor) Molecular mechanisms of synaptic plasticity Implications for immediate early gene expression and learning

https://cuvillier.de/de/shop/publications/3571

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

CONTENTS

	page
<u>Chapter 1</u> : General introduction	1
1. Synaptic plasticity	1
1.1 Basic principles of synaptic transmission	2
1.2 Second messenger pathways	3
1.2.1 Protein kinases	4
1.2.2 Protein phosphatases	5
1.2.3 Phosphoproteins	6
1.3 Glutamate receptors	7
1.3.1 NMDA receptor	7
2. Synaptic plasticity and gene expression	9
2.1 CREB	10
2.2 FOS	11
3. Synaptic plasticity and learning and memory	12
3.1 Hippocampus	12
3.2 Long-term potentiation and depression as a model for learning	12
and memory	
3.3 Influence of stress on synaptic plasticity and learning and memory	14
3.3.1 Corticotropin-releasing factor as mediator of the stress response	15
<u>Chapter 2:</u> Modulation of hypothalamic NMDA receptor function by cyclic AMP-dependent protein kinase and phosphatases	33
<u>Chapter 3:</u> The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses	45
<u>Chapter 4:</u> <i>In vivo</i> NMDA/dopamine interaction resulting in FOS production in the limbic system and basal ganglia of the mouse brain.	62
<u>Chapter 5:</u> <i>In vivo</i> CREB phosphorylation mediated by dopamine and NMDA receptor activation in mouse hippocampus and caudate nucleus.	79
<u>Chapter 6:</u> The corticotropin-releasing factor receptor 1 antagonist CP-154,526 markedly enhances associative learning and paired- pulse facilitation immediately after a stressful experience.	87
<u>Chapter 7:</u> Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning.	101

<u>Chapter 8:</u> Modulation of neuronal excitability and associative learning by different corticotropin-releasing factor-signaling cascades in mouse hippocampus	117
<u>Chapter 9:</u> Summary and general discussion	135
1. Brain regional differences in the modulation of the NMDA	135
receptors by phosphorylation events	
1.1 DARPP-32	136
1.2 Possible physiological relevance of PKA-mediated NMDA receptor modulation in the hypothalamus	138
1.3 Direct versus indirect phosphorylation of the NMDA receptor	138
2. Brain regional differences in gene expression	139
2.1 Specificity in signaling pathways	140
3. Synaptic plasticity and learning and memory	143
3.1 Metaplasticity	143
3.2 Correlation between synaptic plasticity and learning	146
3.2.1 Possible role of calcium/calmodulin-dependent protein kinase II	147
3.2.2 Comparison between two mouse inbred strains Balb/c and C57BL/6N	148
4. Concluding remarks	149
Nederlandse samenvatting	159
Supplement: NS-257, a novel competitive AMPA receptor antagonist, interacts with kainate and NMDA receptors.	165
<u>List of publications</u>	179
<u>Dankwoord</u>	183
<u>Curriculum vitae</u>	185