
Chapter 1

Introduction

Ever since the early days of quantum mechanics, the correspondence between clas-
sical trajectories and atomic spectra has been a question of fundamental interest
and importance. The \old" quantum theory su�ered from the severe drawback
that the Bohr-Sommerfeld quantization rules could only be applied to integrable
systems. Although it had already been noted by Einstein [1] that integrable sys-
tems are exceptional, the question of how to quantize classically non-integrable
systems remained unsolved. After the advent of the \exact" quantum mechanics,
quantum mechanical calculations no longer relied on the underlying classical me-
chanics, so that the interest in the correspondence between classical and quantum
mechanics declined. It was only after the development of periodic-orbit theory [2]
and, as a variant for the photo-excitation spectra of atomic systems, closed-orbit
theory [3, 4], that techniques were available to explore the intimate connections
between quantum spectra and the underlying classical dynamics. These theo-
ries triggered an enormous upsurge of interest in the long-standing problem of
developing what is now called a semiclassical quantization procedure for classi-
cally non-integrable systems, i.e. a quantization scheme based on the underlying
classical dynamics.

The hydrogen atom in external electric and magnetic �elds has become a
prototype example for semiclassical studies. Whereas the hydrogen atom in an
electric �eld is classically integrable, in a magnetic �eld it shows a transition
from regular to completely chaotic behaviour, so that it is ideally suited to inves-
tigate the impact of classical regularity or chaos on quantum mechanical spectra.
Closed-orbit theory provides a semiclassical approach to atomic photo-absorption
spectra [3, 4]. It gives the oscillator-strength density as a sum of two terms, one
a smoothly varying part (as a function of energy) and the other a superposition
of sinusoidal oscillations. Each oscillation is associated with a \closed" classical
orbit starting at and returning to the nucleus. It is therefore possible to analyse
a given photo-absorption spectrum in terms of the closed orbits contributing to
it. For the hydrogen atom in a magnetic �eld, a comprehensive classi�cation
of closed orbits exists, and in this framework the large-scale structures of the
spectrum found a convincing semiclassical interpretation. Conversely, atomic en-
ergy levels and the corresponding transition strengths could be calculated from
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classical orbits [5].

Because the hydrogen atom in a purely magnetic �eld possesses a rotational
symmetry around the magnetic �eld axis, the angular momentum component
along this axis is conserved. Therefore, the dynamics can be reduced, e�ectively,
to two degrees of freedom. If, to the contrary, the atom is subjected to the
combined inuences of perpendicular magnetic and electric �elds, all continuous
symmetries are broken and three non-separable degrees of freedom have to be
dealt with. In addition, the dynamics depends on two external parameters, viz.
the �eld strengths, instead of only one. Hence, both the classical and quantum
dynamics of the crossed-�elds hydrogen atom is signi�cantly more complex than
in a magnetic �eld. Even after ten years of intense study, this complex behaviour
is far from being completely understood.

Although a closed-orbit theory can be derived for the crossed-�elds [6,7] as well
as for the magnetized hydrogen atom, and the large-scale structures of crossed-
�elds photo-absorption spectra have been interpreted successfully in terms of
individual closed orbits [7{11], only contributions of rather short orbits have
been identi�ed, and a general overview of the closed orbits in the crossed-�elds
system is not yet available. What is more, closed orbits are known to proliferate
through bifurcations as the external �eld strengths are increased. As a crucial
step towards a classi�cation of closed orbits, therefore, one needs a bifurcation
theory describing the generic types of bifurcations one should expect to �nd. A
bifurcation theory for periodic orbits in Hamiltonian systems was developed long
ago by Mayer [12]. Nevertheless, an analogue for closed orbits is still unavailable.

Much e�ort has been spent since the advent of the modern semiclassical the-
ories on the construction of a general semiclassical quantization scheme (see,
e.g., [13{19]). Although closed-orbit theory provides a means of calculating
smoothed spectra, it does not readily lend itself to a calculation of individual
energy levels because the sum over all closed orbits is divergent. Periodic-orbit
theory, which gives a semiclassical approximation to the density of states of a
quantum system, is formally analogous to closed-orbit theory and shares this
fundamental diÆculty. A number of di�erent techniques have been proposed to
overcome the convergence problems of the semiclassical theories. All of them are
limited in their applicability because they make certain assumptions about the
underlying classical dynamics. In particular, no method proposed to date can be
used if bifurcations of classical orbits must be taken into account.

Most of the work on semiclassical quantization was restricted to systems hav-
ing two degrees of freedom. It is of fundamental importance to assess the applica-
bility of semiclassical schemes to systems with three or more degrees of freedom.
Nevertheless, due to the additional complications brought about by the third de-
gree of freedom, previous studies [20{25] have been restricted to billiard systems.
A full semiclassical quantization has so far been achieved for the three-dimensional
Sinai billiard [20] and the N -sphere scattering system [23] only. As it exhibits a
transition from regular to chaotic dynamics, the hydrogen atom in crossed �elds is
considerably more complicated than billiard systems, and a semiclassical quanti-
zation has not even been attempted to date. To achieve a quantization, a number
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of rather diverse problems must be solved. First, a thorough understanding of
the closed orbits in the crossed-�elds system is required. Second, bifurcations of
closed orbits will turn out to play an important role in the crossed-�elds hydrogen
atom. They introduce divergences into the semiclassical spectrum, and suitable
uniform approximations smoothing these divergences must be found. Third, a
semiclassical quantization procedure capable of dealing with uniform approxima-
tions must be developed. All of these problems will be tackled in the course of
this work.

In chapter 2, the basic properties of the crossed-�elds hydrogen atom will be
described and the fundamental formulae of closed-orbit theory will be derived.
Recently, Granger and Greene [26] proposed a novel formulation of closed-orbit
theory for atoms in magnetic �elds based on semiclassical S-matrices. Their
formulation appears to be more exible than the conventional treatment when
applied to non-hydrogenic atoms or molecules. I have extended it to the case of
crossed external �elds. For the case of a magnetic �eld, I discuss and clarify some
misleading conclusions arrived at by Granger and Greene.

The semiclassical investigations presented here are largely based on the method
of harmonic inversion, which was introduced [19, 27] as a general technique for
both semiclassical quantization and the semiclassical analysis of quantum spec-
tra. Several variants of the method have been proposed in the literature. I will
summarize these in chapter 3 and apply them to two simple example systems to
compare their numerical eÆciencies. Finally, I will generalize the method to the
semiclassical quantization of systems without a classical scaling property. This
generalization is relevant beyond the realm of closed-orbit theory, because it can
also be applied in connection with semiclassical trace formulae. It is the �rst
truly universal semiclassical quantization scheme proposed in the literature, be-
cause it does not make any assumptions whatsoever about the underlying classical
dynamics.

The numerical integration of the classical equations of motion for the crossed-
�elds hydrogen atom is plagued by the presence of the Coulomb singularity. As
is well-known, this singularity can be regularized by means of a Kustaanheimo-
Stiefel transformation [28]. A novel formulation of the transformation in the
language of geometric algebra was introduced by Hestenes [29]. It o�ers the ad-
vantages of greater calculational simplicity and a clearer geometric interpretation
than provided by a matrix-based approach. In this formalism, I will develop
Lagrangian and Hamiltonian formulations of the Kustaanheimo-Stiefel transfor-
mation in chapter 4. I will then discuss the problems speci�c to the description
of closed orbits and demonstrate that the geometric algebra allows a particularly
clear exposition.

In chapter 5, the general framework for a local theory of closed-orbit bifurca-
tions will be set up and the codimension-one generic bifurcations will be identi�ed.
It will be shown that the presence of reection symmetries in the crossed-�elds
hydrogen atom has a signi�cant impact on the possible types of bifurcations.
Subsequently, I will describe the actual closed orbits and their bifurcations at
low scaled energies. The simple elementary bifurcations will be seen to form a
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surprisingly rich structure of complicated bifurcation scenarios. Finally, I will
propose a classi�cation scheme for closed orbits which is inspired by the case of a
pure magnetic �eld, and I will demonstrate that it is applicable for electric �eld
strengths at least up to half the strength of the magnetic �eld (in atomic units).

Chapter 6 discusses the semiclassics of the crossed-�elds system. I will present
both low-resolution and high-resolution semiclassical photo-absorption spectra.
In the latter case, the strongest spectral lines are resolved. The observation that
the high-resolution spectra cannot easily be improved so as to yield more spec-
tral lines leads to a closer inspection of the semiclassical signal. Semiclassical
recurrence spectra reveal that closed-orbit theory can be applied in principle for
long as well as for short closed orbits, but the semiclassical spectrum is marred
by missing orbits and, in particular, by the presence of bifurcations of closed
orbits. Bifurcations lead to a divergence of the usual closed-orbit formula and
must be treated by uniform semiclassical approximations. I will propose a heuris-
tic, easy-to-apply technique for the construction of uniform approximations and
derive these for the two types of codimension-one bifurcations. I will then show
how uniform approximations can be included in the semiclassical quantization by
harmonic inversion.

As the bifurcation scenarios occurring in crossed �elds turn out to be too com-
plex for a semiclassical quantization to be actually carried out, I will focus my
discussion, in chapter 7, on the hydrogen atom in an electric �eld. This system is
integrable, hence its classical mechanics is easy to understand. I will derive semi-
analytical formulae describing the closed orbits which have not been given before
in the literature. In spite of its apparent simplicity, the system still exhibits a
multitude of closed-orbit bifurcations, that have so far precluded a semiclassical
quantization based on closed-orbit theory. A uniform approximation describing
a single bifurcation in the Stark system has been given before [30,31]. Using the
general method of chapter 6, I will re-derive it in a form which is much easier
to apply in practice and supplement it with a uniform approximation for a more
complicated bifurcation scenario. The latter is of fundamental interest because it
is the �rst uniform approximation described in the literature which depends on
a topologically non-trivial con�guration space. The uniform approximations will
then be used for a semiclassical quantization in a spectral region where the con-
ventional closed-orbit formula would be completely useless due to an abundance
of bifurcations. In this way, it is demonstrated that the quantization scheme
introduced in chapters 3 and 6 indeed permits the inclusion of uniform approxi-
mations into a semiclassical quantization, which has so far been impossible.

Because of their high topicality, part of the results in this work have been
published in advance [32].


