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Chapter 1

Concepts of Finite Difference

Modeling

The most fundamental equation underlying the theory of seismology is the equa-

tion of motion which describes the propagation of waves radiated from earthquakes

sources and relates forces in the medium to measurable ground motion [4, 75]. In its

most general form and for an inhomogeneous anisotropic medium it can be written

as

ρüi =
∂σij

∂xj
+ fi, (1.1)

where ρ is the density of the material, üi denotes the second derivative of the three

elements of the ground displacement vector u with respect to time, σij is the ijth

component of the stress tensor and fi denote the components of the body forces.

The indices i and j stand for the spatial directions.

In an earthquake almost all Earth materials show a linear proportionality between

stress σij and strain εkl. For a linear elastic medium, the empirical relationship

between stress and strain is known as Hooke’s law. In case of general isotropy

only two elastic moduli are needed to describe the proportionality. A common

representation is done using Lamé parameters λ and μ which are material dependent

and may vary with location:

σij = λεkkδij + 2μεij. (1.2)

δij indicates the Kronecker delta function, and the indices i, j, and k stand for the

three spatial directions.
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Using this simplified formulation of Hooke’s law, and a relationship between strain

and displacement

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(1.3)

valid for infinitesimal strain,

Combinig equations 1.1 – 1.3 yields the wave-equation for an inhomogeneous isotropic

medium:

ρüi = (λ + μ)uj,ij + μui,jj + λ,iuj,j + μ,j(ui,j + uj,i) + fi (1.4)

This equation can be rewritten as a system of second order partial differential equa-

tions. A common representation for Finite Difference applications is the velocity-

stress formulation [78, 134, 135] which is also used by the Finite Difference method

throughout this thesis. There are several advantages of this formulation over the for-

mulation expressed in displacements (e.g. [74]). The scheme is stable for all values

of Poisson’s ratio, grid dispersion and grid anisotropy are small, both, surface and

buried sources can easily be implemented, and the free-surface boundary condition

is easily satisfied [76]. The equations of motions are given by

ρ
∂vx

∂t
=

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ fx, (1.5)

ρ
∂vy

∂t
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ fy, (1.6)

ρ
∂vz

∂t
=

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ fz, (1.7)

where vx, vy, and vz denote the particle velocity components, σxx, σyy, and σzz are

the normal stresses, and σxy, σxy, and σyz are the shear stresses. The constitutive

laws are then expressed as

∂σxx

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vx

∂x
, (1.8)

∂σyy

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vy

∂y
, (1.9)

∂σzz

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vz

∂z
, (1.10)



1.1. STABILITY OF A SYSTEM 21

∂σxy

∂t
= μ

(
∂vy

∂x
+

∂vx

∂y

)
, (1.11)

∂σxz

∂t
= μ

(
∂vz

∂x
+

∂vx

∂z

)
, (1.12)

∂σyz

∂t
= μ

(
∂vz

∂y
+

∂vy

∂z

)
. (1.13)

In order to solve the equations numerically, in a Finite Difference scheme the mod-

eling volume V is discretized into nx · ny · nz grid points with distance dx to

the neighboring grid point. Given a continuous solution of the wave-equation in

the volume V the solution at those discrete points can be obtained by indirectly

approximating the continuous solution. This is achieved by the approximation of

derivatives. Traditionally, Taylor series expansions of the solution in the neighbor-

hood of point xi are used. Another possibility for obtaining the approximation is by

the computation of the tangent line to the function [72, 128]. The discretized form

of equations 1.5 – 1.13 can be found in [76].

1.1 Stability of a System

A crucial issue for explicit Finite Difference numerical methods is stability. Stability

of a system is in practical terms connected to an energy limit and reflects the fact

that the total energy in a physical system should not change.

Mathematically this is achieved when the Courant-Friedrichs-Lewy (CFL) stability

criterion

dt · vmax
dx

≤ c (1.14)

is met (e.g. [103]), where vmax is the maximum (compressional wave) velocity in

the modeling volume V , dx is the grid spacing, dt the sampling interval in time, and

c some constant number which has to be determined empirically. In this study, for c

a value of 0.45 is used [103]. This is a conservative estimate. Other authors suggest

to use a slightly larger value of 0.5 (e.g. [71, 119]).


