

Tristan Kremp (Autor)

Split-step wavelet collocation methods for linear and nonlinear optical wave propagation

https://cuvillier.de/de/shop/publications/3655

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

Contents

1	Introduction			
2	Overview			
	2.1	Published methods	5	
		2.1.1 Wavelet methods for nonlinear optical pulse propa-		
		gation	5	
		2.1.2 General wavelet methods for partial differential equa-		
		tions	7	
	2.2	Achievements of the present work	8	
3	Non	alinear optical pulse propagation	10	
	3.1	Maxwell's equations	10	
	3.2	Susceptibility tensors $\breve{\chi}^{(n)}$	13	
	3.3	Scalar slowly varying envelopes	16	
	3.4	Wave equation in Fourier domain	19	
	3.5	Separation ansatz	22	
	3.6	Perturbed propagation constant $\beta'(\omega)$	23	
	3.7	Approximation of constant refractive index $n cdots cdots cdots$	25	
	3.8	Definition of envelope $a(t, z)$ and physical units	26	
	3.9	Slowly varying envelope approximation (SVEA)	27	
	3.10	Nonlinear Schrödinger equation (NLSE)	28	
		3.10.1 Transformation of variables	30	
		3.10.2 Influence of carrier frequency	31	
		3.10.3 Soliton solution	33	
		3.10.4 Higher-order nonlinear effects	34	
4	Coll	location method	36	
	4.1	Method of weighted residuals	36	
	4.2	Collocation method	38	

ii Contents

	4.3	Split-s	step integration	40
	4.4	Split-	step collocation method (SSCM) \dots	42
		4.4.1	General basis	42
		4.4.2	Harmonic basis, split-step Fourier method (SSFM) .	43
		4.4.3	Gauss-Hermite basis	47
		4.4.4	Rating of methods (SSCM vs. SSFM)	49
	4.5	Split-	step wavelet collocation method (SSWCM)	49
		4.5.1	Calculation of the propagation operator e^{Lh}	51
		4.5.2	Complexity of the SSWCM	55
5	Mu	ltireso	lution analysis (MRA)	56
	5.1	Scalin	g function ϕ	56
	5.2		resolution analysis (MRA)	
	5.3	Wavel	let ψ	59
		5.3.1	Biorthogonal wavelets	62
		5.3.2	Orthogonal wavelets	
	5.4	Repr	esentation of functions in space V_j	67
		5.4.1	Projection operator P^j and series coefficients s_k^j	67
		5.4.2	Projection operator Q^j and series coefficients d_k^j	68
		5.4.3	Combined representation	69
		5.4.4	Fast wavelet transform (FWT)	70
		5.4.5	Inverse fast wavelet transform (IFWT)	71
		5.4.6	Shifted vanishing moments and numerical quadrature	e 74
	5.5	Repr	esentation of operators in space V_j	75
		5.5.1	MRA operator standard form	
		5.5.2	<u> </u>	
		5.5.3	Elements $T_{kk'}^{j}$ of the differential operator $\mathcal{T} = d^{\mu}/dx^{\mu}$	
		5.5.4	Operator function $\mathcal{U} = f(\mathcal{T})$	
	5.6		polating wavelets (Deslaurier-Dubuc)	
		5.6.1	Interpolation procedure	
		5.6.2	Filter coefficients	
		5.6.3	FWT and IFWT	
		5.6.4	Scaling functions and wavelets	98
		5.6.5	Elements of the differential operator $\mathcal{T} = d^{\mu}/dx^{\mu}$.	103
		5.6.6	Numerical dispersion behavior of the differential operator $\mathcal{T} = d^2/dx^2 \dots \dots \dots \dots$	102
		567	,	103
	5.7	5.6.7	Nonstandard form of the operator function $\mathcal{U} = f(\mathcal{T})$ rive split-step multiresolution wavelet collocation	105
	0.1	_	od (SSMRWCM)	106

Contents

6	Implementation and results		
	6.1	SSCM vs. SSFM (single impulse propagation)	108
	6.2	SSWCM vs. SSFM	111
		6.2.1 General case	111
		6.2.2 Fixed accuracy (fixed complexity factor q)	112
		6.2.3 Fixed window W	112
		6.2.4 Rating of methods (SSWCM vs. SSFM)	113
	6.3	WDM simulations	
		6.3.1 SSWCM vs. SSFM	115
		6.3.2 Bit error rate and maximum spectral efficiency	122
		6.3.3 Channel-separated WDM simulations (C-SSWCM) . :	143
	6.4	SSMRWCM vs. SSFM	150
7	Sun	nmary and outlook	152
\mathbf{A}	Ort	hogonal collocation	54
	A.1	Choice of collocation points	154
		A.1.1 Gaussian quadrature	155
		A.1.2 Approximation function $A(x)$	157
	A.2	Choice of basis functions	159
	A.3	Matrices	
		A.3.1 Inversion of matrix Φ	161
		A.3.2 Gauss-Hermite basis functions	162
\mathbf{B}			L 65
	B.1	Formal solution using exponential $e^{h\mathcal{H}}$	
		B.1.1 Integration $A(z+h) = e^{h\mathcal{H}(z)} A(z) \dots \dots$	167
		B.1.2 Integration $A(z+h) = e^{h\mathcal{H}(z+h/2)} A(z)$	167
	B.2	Splitting of the operator $e^{(\mathcal{P}+\mathcal{Q})h}$	169
		B.2.1 Asymmetric splitting $e^{\mathcal{P}h} e^{\mathcal{Q}h} \dots \dots$	169
		B.2.2 Symmetric splitting $e^{\mathcal{P}h/2} e^{\mathcal{Q}h} e^{\mathcal{P}h/2} \dots \dots$	170
\mathbf{C}	Mat		172
	C.1	Functions of matrices	172
		C.1.1 Diagonal matrices	172
		C.1.2 Identity matrix I	173
		C.1.3 Similarity transformation	173
	C.2	Harmonic analysis	174
		C.2.1 Fourier series	
		C.2.2 Fourier integral	175
		C.2.3 Discrete Fourier transform (DFT)	

iv Contents

	C.2.4	Group velocity	. 181			
	C.2.5	Chromatic dispersion and group delay dispersion .	. 182			
C.3	Pertu	rbation theory	. 183			
	C.3.1	Eigenvalue problem	. 183			
	C.3.2	Perturbed operator	. 184			
C.4	Error	measure ε	. 188			
C.5	Filter	and operator coefficients	. 190			
	C.5.1	Biorthogonality relations	. 190			
	C.5.2	Nonstandard form of the operator function $\mathcal{U} = f(\mathcal{T})$	193			
\mathbf{Bibl}	liograp	phy	195			
\mathbf{Not}	ation		206			
Publications						
Acknowledgment						
Curriculum vitae						