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Chapter 1

Introduction

With the growth of internet traffic, the demands on photonic transmission
systems are subject to a permanent rise. Wavelength division multiplex-
ing (WDM) is a key technology for making use of the available bandwidth
of optical transmission fibers. For an optimum design of a WDM system
(Fig. 1.1), all the parameters of the transmitter, transmission medium and
receiver have to be chosen such that a maximum amount of information
can be transmitted without detection errors. Therefore, extensive numer-
ical simulations have to be performed to test the influence of all these
parameters, and to find an optimum configuration.
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Fig. 1.1: Wavelength division multiplexing (WDM) system.

Due to the long transmission distances ranging from 50 km to thou-
sands of kilometers, a good deal of the total computational effort con-
centrates on waveguide propagation, which is modeled by the nonlinear
Schradinger equation (NLSE). As the simulation time can be several days
or even weeks, powerful numerical tools with an optimum complexity are
extremely important.

The standard numerical technique used by most professional simula-
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tion tools is the split-step Fourier method (SSFM). As a pseudospec-
tral method, this technique is exponentially convergent and therefore ex-
tremely accurate for sufficiently small numerical propagation steps. How-
ever, due to the use of the fast Fourier transform, the SSFM has the com-
plexity O(N log, V), with N as the number of time discretization points
during propagation. This complexity is larger than the optimum O(N)
complexity. For a realistic simulation of state-of-the-art WDM systems,
the computing power of single-processor units is not sufficient. For nu-
merical simulations, the size of the investigated WDM systems must be
reduced, such that with the available clock rate, satisfying results can be
obtained within a tolerable computation time. Hence, the clock rate deter-
mines the size of the practically computable WDM systems. According to
Moore’s law, which is assumed to hold for another two decades, the clock
rate doubles approximately every 18 months. Hence, the dimension N of
the simulated problems will further increase, and the factor log, N, which
makes the SSFM slower than a possibly faster algorithm with an optimum
O(N) complexity, will become a more and more critical drawback in the
future.

Hence, there is an increasing demand for accurate, fast O(N) algo-
rithms for such long-distance integrations of the NLSE. Using the meth-
ods of multiresolution analysis (MRA), a new split-step wavelet collocation
method (SSWCM) with optimum complexity O(NV) for a fixed accuracy,
and allowing a substantial reduction in computation time compared to the
SSFM, is developed in the present work. It is structured as follows:

In Chap. 2, important publications in the field of wavelet methods for
nonlinear optical pulse propagation and for the general solution of partial
differential equations are discussed.

The NLSE describing nonlinear optical pulse propagation is derived
from Maxwell’s equations in Chap. 3.

In Chap. 4, the so-called collocation method is developed from the
method of weighted residuals in the case of Dirac weight functions. The
symmetric split-step integration technique, which is used for all the meth-
ods compared in this work, is illustrated. The combination of the collo-
cation method for the discretization of the differential equation with the
split-step integration technique is introduced and named split-step collo-
cation method (SSCM). It is shown that the SSFM is a special case of the
SSCM using harmonic basis functions. To reduce the complexity, a basis
of translated interpolating functions is introduced. Since these are the
scaling functions generating compactly supported interpolating wavelets,
the corresponding propagation algorithm is called split-step wavelet collo-



cation method (SSWCM).

In Chap. 5, the concept of multiresolution analysis (MRA) is devel-
oped, based on the scaling equation of a so-called scaling function. The
functions which span the complement spaces of the MRA are the wawvelets.
The fast wavelet transform (FWT) is introduced as a discrete transform
with linear O(N) complexity to separate the components of a signal. Us-
ing such a discrete wavelet representation, the so-called standard and non-
standard form of general linear operators is developed. Augmenting the
SSWCM with an FWT, and formulating the linear propagation operator of
the NLSE in nonstandard form, we arrive at the split-step multiresolution
wavelet collocation method (SSMRWCM).

In Chap. 6, the results using these new techniques are presented and
compared to the standard SSFM:

e For the propagation of single impulses (solitons), the SSFM is com-
pared to the SSCM using weighted orthogonal polynomials as ba-
sis functions (Gauss-Hermite functions). For a fixed accuracy, the
SSCM is almost one order of magnitude faster than the SSFM.

e For the propagation of WDM pulse sequences, the SSFM and
SSWCM are compared with respect to computation time and ac-
curacy. Due to its O(N) complexity, the SSWCM requires less than
40 % of the computation time of the SSFM for the simulation of a
large WDM system with 64 channels. This substantial reduction in
computation time makes it possible to simulate the influence of the
input power on the bit error rate and the maximum spectral effi-
ciency of large WDM systems. Results for 16 and 32 channels are
presented. For these very time-consuming simulations, the compu-
tation time saving is more than 70 % compared to the SSFM.

e To obtain a complexity which is independent from the number of
WDM channels, a channel-separated split-step wavelet collocation
method (C-SSWCM) is developed and compared to a corresponding
channel-separated split-step Fourier method (C-SSFM). As a result,
the C-SSWCM requires less than 20 % of the computation time of
the C-SSFM for the simulation of a large WDM system with 64
channels.

e The SSMRWCM is advantageous, if signals vary strongly in only a
limited range of the time discretization window. Due to the adap-
tivity of the method, the SSMRWCM provides a significant speed
improvement in this case.
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The appendices A to C give details on orthogonal collocation and split-
step integration, and provide some mathematical supplements, e. g., error
measures and perturbation theory.



