

Dean Hashmi (Autor) Biodiversity Wave Mechanics: a Physics for Living Systems

https://cuvillier.de/de/shop/publications/3658

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Table of Contents

Introduction References		1 15
Chapter 1:	Specification of the Problem	21
1.1 Biodive	rsity studies: scope and relevance	21
1.2 The evo	lutionary ecology of biodiversity: state of art	25
1.2.1	Target variables	27
1.2.2	Spatial patterns of variation of species richness	29
1.2.3	Conceiving eclectic theories on species richness variation	31
	1.2.3.1 Extrapolating a multidimensional space for	
	theories with different scope	36
	1.2.3.1.1 Dimension 1: theories for different spatial scales	
	(classes: local, regional, global)	36
	1.2.3.1.2 Dimension 2: theories for different temporal	
	scales (classes: ecological and evolutionary)	37
	1.2.3.1.3 Dimension 3: theories for open or closed	
	communities (classes: with or without immigration	
	and/or speciation)	38
	1.2.3.1.4 Dimension 4: theories for species with different	
	identity: (classes: niche-based, neutral)	38
	1.2.3.1.5 Dimension 5: theories based on different units	
	of interaction (classes: species or individuals)	39
	1.2.3.1.6 Dimension 6: equilibrium or non-equilibrium	
	theories	39
	1.2.3.1.7 Dimension 7: theories based on different	
	resource types (classes: undefined, space, habitat,	
	nutrients, energy, biomass)	39
	1.2.3.1.8 Inflating the space opens >500 slots for different	
	theories	39
	1.2.3.2 Existing theories on species richness variation: to	
	which extent is the inflated multidimensional space for	
	theories already filled?	41
	1.2.3.2.1 Local coexistence theories	41
	1.2.3.2.2 Regional scales	45
	1.2.3.2.3 Global scale	48
	1.2.3.2.4 Conclusion	49
	1.2.3.3 How many theories are needed?	50
	1.2.3.3.1 Spatial scales: from local to global, and return	50
	1.2.3.3.1.1 Macroecological modelling	50

1.2.3.3.1.2 Mechanistic modelling	53
1.2.3.3.2 How many theories are needed for ecological and	
evolutionary time scales?	54
1.2.3.3.2.1 Ecological time scales	55
1.2.3.3.2.2 Evolutionary time scales	57
1.3 Energy and biodiversity	57
1.3.1 Clarification of the term 'energy'	58
1.3.1.1 Classical thermodynamics	59
1.3.1.2 The limitations of classical thermodynamics	60
1.3.1.2.1. Classical thermodynamics and its limited	
applicability to the nested equilibria that characterize	
the universe	60
1.3.1.2.1.1 Quantum dynamics underlies classical	
thermodynamics	61
1.3.1.2.1.2 Reactions under the influence of strong and	
weak nuclear forces	62
1.3.1.2.1.3 Gravitation	62
1.3.1.2.2 The non-equilibrium universe	63
1.3.1.2.2.1 Deviations from equilibrium and the failure	
of classical thermodynamics	63
1.3.1.2.2.2 Energetics of far from equilibrium dissipative	
structures	63
1.3.1.3 Energy and information	64
1.3.1.4 Energy and life	66
1.3.1.4.1 Boltzmann and the second law	67
1.3.1.4.2 The Schrödinger debate	67
1.3.1.4.3 Two opposing energetic aspects of life	70
1.3.1.4.4 Measuring deviations of living systems from	
energetic equilibrium	72
1.3.1.5 Concluding remarks: attempts of a unified view	
of energetics	74
1.3.1.5.1 Definition of energy: attempt of a brief	
logical account, including implications for life	76
1.3.2 Energy and causation: definitions of physics, mathematics	
and biology	78
1.3.3. Existing energy related ideas and concepts applied to	
living systems	83
1.3.3.1 Evolution and energetics	85
1.3.3.1.1 Evolution and energy flux maximization	86
1.3.3.1.2 Energy and fitness	89
1.3.3.1.3 Energy degradation and biotic information	91

1.3.3.1.4 Energy and other 'goal functions'	93
1.3.3.1.5 Energy and life history evolution	94
1.3.3.2 Ecology and energetics	95
1.3.3.2.1 Energy and food web properties	95
1.3.3.2.2 Energy and succession	96
1.3.3.2.3 Energy and correlated attributes of ecosystems	97
1.3.3.3 Energy and the variation of species richness in	
space and time	98
1.3.3.3.1 Correlations between species richness and	
"energetic factors"	98
1.3.3.3.1.1 Do high correlations between energetic	
variables and species richness have any meaning	
at all?	100
1.3.3.3.1.1.1 Arbitrary choice of energetic parameters	100
1.3.3.3.1.1.2 Vague definition of energy related	
parameters	100
1.3.3.3.1.1.3 Arbitrary choice of spatial scale	101
1.3.3.2 Energy related theories on species richness	
variation	101
1.3.3.3 Difficulties to accept an energetic determination	
of species richness variation	104
1.3.3.3.1 Strong correlations between energy	
related variables and other parameters	104
1.3.3.3.2 Productivity-richness patterns vary strongly	105
1.3.3.3.3 Enrichment experiments usually indicate	
negative correlations	105
1.3.3.3.4 Diversity influences productivity	106
1.3.3.4 Energy as a potential determinant of species	
richness: preliminary conclusion	106
1.3.4 Dissecting the energy transformations in the biosphere	107
1.3.4.1 Metabolic degradation of energy in trophic	
food webs	108
1.3.4.2 Auxiliary metabolic relief	108
1.3.4.2.1 Heat as such	108
1.3.4.2.2 Hydrospheric and atmospheric circulation	109
1.3.4.3 Degradation of energy by perceptional processes	110
1.3.4.4 Degradation of energy causing mutation	110
1.3.4.5 Degradation of energy causing disturbances	110
1.3.4.6 Forces shaping the surface of the earth	110
1.3.4.7 Synergetic effects of energies	111

1.3.5	5. Measuring energy flux in the biosphere	112
	1.3.5.1 Metabolic energy degradation	112
	1.3.5.2 Disturbances	113
	1.3.5.3 Mutation rates	114
1.3.6	Senergetic semantics: a useful distinction between	
'av	vailable energy' and 'exergy'	114
1.4 The spe	cified problem	116
References		119
Chapter 2:	Modes of Enquiry, Causal Inference and	
	Theory Formulation in Evolutionary Ecology	149
2.1 The roo	ts and aims of science	156
2.2 The dor	nains of scientific enquiry: description, exploration,	
understar	nding and prediction	156
2.2.1	Description	156
	2.2.1.1 Laboratory experiments and reductionistic	
	description	157
2.2.2	2 Exploration	157
2.2.3	J Understanding	157
	2.2.3.1 Understanding and emergence	158
2.2.4	l Prediction	160
	2.2.4.1 Phenomenological prediction	160
	2.2.4.2 Mechanistic prediction	161
	2.2.4.2.1 Limits to mechanistic prediction	161
	2.2.4.2.1.1 Stochasticity	161
	2.2.4.2.1.2 Nonlinearity and the limits of	
	measurement	161
2.3 Causal	inference	162
2.3.1	. Methods which do not require a conceptual framework	162
	2.3.1.1 Laboratory experiments	162
	2.3.1.2 Field experiments	163
	2.3.1.3 Natural experiments	163
2.3.2	2 Methods which require a conceptual framework	163
	2.3.2.1 Quasi-experiments	164
	2.3.2.1.1 Qualitative quasi-experimentation	166
	2.3.2.1.2 Quantitative quasi-experimentation	167
	2.3.2.1.3 Strategies of quasi-experimentation	167
	2.3.2.1.3.1 Mechanistic quasi-	
	experimentation	167
	2.3.2.1.3.2 Rational quasi-experimentation	167

2.3.3 Levels of understanding	168
2.3.3.1 Primary (univariate) understanding	168
2.3.3.2 Secondary (multivariate) understanding	168
2.3.3.3 Ultimate understanding	169
2.3.4 Explorative studies, quasi-experiments, and supposed	
a priori reasoning of causation	169
2.4 Theory formulation by laboratory, field or natural	
experimentation	170
2.4.1 Theories as simple mechanistic games	171
2.4.1.1 The meaning of theories for 'ideal' states	174
2.5 Possible causes for weaknesses in scientific inference	175
2.5.1 Unbalanced evolution of epistemological issues	175
2.5.2 Notions of 'good science'	176
2.5.3 The flood of scientific publications	178
2.5.4 More haste, less science	179
2.5.5 The 'monkey business' aspect of science	179
2.6 The role of epistemological weaknesses and social burdens	
in evolutionary ecology	183
2.6.1 Epistemological weaknesses	183
2.6.2 Social burdens	184
References	285

Chapter 3:	A Conceptual Framework for the Examination	
	of Possible Determinants of Biological Species	
	Richness in Biospheres	191
3.1 Definition	on of biological species richness	195
3.2 The 'evo	olutionary play in the ecological theater' or the 'ecological	
play in th	e evolutionary theater'? On the presence and absence of	
species an	d on the evolution of ecological communities	200
3.2.1	Reasons why a species cannot be found within a given	
are	ea	200
3.2.2	Fates of species found in a given area	201
3.2.3	. Three different ecological settings and their	
eve	olutionary identities	201
	3.2.3.1 The biosphere with perfect complementarity	202
	3.2.3.2 The biosphere with constrained	
	complementarity	202
	3.2.3.3 The biosphere without complementarity	
	(species are ecologically equivalent i.e. 'neutral')	204
	3.2.3.4 Which of the three settings is the most	
	appropriate for our biosphere?	206

3.3 Six reasons for species richness limitation in biospheres:	
species capacity, speciation rates, immigration rates, emigration	
rates, extinction rates and self-organization	212
3.4 Species capacity may be limited by three kinds of resources:	
available energy, matter and space	213
3.4.1 Energy degradation as a measurement of absolute	
resource saturation	218
3.5 A conceptual framework of hypotheses on species richness	
variation	219
3.5.1 Hypothesis 1: total energy flux	220
3.5.2 Hypothesis 2: species energy degradation	224
3.5.3 Hypothesis 3: competition	229
3.5.4 Hypothesis 4: niche space limitation	232
3.5.5 Hypothesis 5: niche width	236
3.5.6 Hypothesis 6: average minimum viable population size	237
3.5.7 Hypothesis 7: competition relief by ecological	
perturbation	242
3.5.8 Hypothesis 8: neutral community size	244
3.5.9 Hypothesis 9: geographic impediments to gene flow	244
3.5.10 Hypothesis 10: extrinsic mutation likelihood	248
3.5.11 Hypothesis 11: intrinsic mutation likelihood	249
3.5.12 Hypothesis 12: generation time	253
3.5.13 Hypothesis 13: birth rate dependent strength of natural	
selection	255
3.5.14 Hypothesis 14: recombination history	255
3.5.15 Hypothesis 15: sexual selection	256
3.5.16 Hypothesis 16: hybridisation	257
3.5.17 Hypothesis 17: sympatric spatial branching	258
3.5.18 Hypothesis 18: sympatric ecological branching	258
3.5.19 Hypothesis 19: genetic drift	259
3.5.20 Hypothesis 20: large adaptive populations	260
3.5.21 Hypothesis 21: small adaptive populations	260
3.5.22 Hypothesis 22: cultural evolutionary branching	261
3.5.23 Hypothesis 23: immigration	261
3.5.24 Hypothesis 24: emigration	265
3.5.25 Hypothesis 25: intrinsic evolutionary perturbations	266
3.5.26 Hypothesis 26: extrinsic evolutionary perturbations	271
3.5.27 Hypothesis 27: self-organization	277
3.5.28 Hypothesis 28: chance	278
3.5.29 Quality of data used	281
3.6 Conclusion	281

References

Chapter 4:	Global Patterns of Species Richness of Seabird	S
	as a Quasi-Experimental Test of the Potential Significance of Available Energy for Biological	ſ
	a-Diversity	323
1 1 The ter	u-Diversity rat hypothesis and earlier attempts to test it	325
4.1 The cor	e idea	320
4.2 The core	e luca eal procedures	343
4.3.1	Strategy of examination of the seabird system as a	040
noi	tential quasi-experimental setting	343
Po	4.3.1.1 Three problems	344
	4.3.1.1.1 Spatial dependence	344
	4.3.1.1.2 Simultaneous calculation of a number of	511
	Type I errors	345
	4.3.1.1.3 Unknown mathematical relationships	346
	4.3.1.2 Statistical Procedures	347
4.4 Definition	on of the seabird system, species richness and the	
independe	ent variables considered	347
4.4.1	The target variable	348
	4.4.1.1 Definition of the seabird system	348
	4.4.1.2 Definition of the grid	350
	4.4.1.2.1 Does the grid really address α -diversity?	352
4.4.2	The target parameter	353
	4.4.2.1 Energy flux estimators	353
	4.4.2.1.1 Primary production	355
	4.4.2.1.2 An attempt to assess the ecological and	
	transformation efficiencies of reproducing seabird	
	communities in relation to adjacent marine pelagic	
	primary production	360
	4.4.2.1.2.1 Species sizes and the size of the seabird	
	system	361
	4.4.2.1.2.2 Adult breeding bird metabolism	366
	4.4.2.1.2.3 Offspring energy accumulation	369
	4.4.2.1.2.4 Offspring energy degradation at the	
	breeding site	371
	4.3.2.1.2.5 Model Selection	372
	4.4.2.1.2.6 Reconsideration of potential uncertainties	
	in the data used for estimation	372
	4.4.2.1.2.7 Relationship between regional primary	
	production and energy degradation by the seabird	

system (ecological efficiency)	373
4.4.2.1.2.8 Relationship between monopolized	
energy and the transformation into breeding	
pairs(transformation efficiency)	378
4.4.2.1.2.9 Capability of the seabird system to	
transform primary production into breeding pairs	378
4.4.2.1.2.10 Conclusion: measurements of seabird	
productivity	379
4.5 The seabird system and the conceptual framework on species	
richness variation elaborated in chapter 3: can global patterns of	
seabird communities be understood as a quasi-experimental test	
of the energy hypothesis?	379
4.5.1 Hypothesis 1: Components of ecological efficiency	379
4.5.2 Hypothesis 2: Components of transformation efficiency	383
4.5.3 Hypothesis 3: Competition	387
4.5.4 Hypothesis 4: Niche space limitation	406
4.5.5 Hypothesis 5: Niche width	410
4.5.6 Hypothesis 6: Average minimum viable population size	412
4.5.7 Hypothesis 7: Competition relief by ecological	•••
perturbation	412
4.5.8 Hypothesis 8: Neutral community size	416
4.5.9 Hypothesis 9: Geographic impediments to gene flow	418
4.5.10 Hypothesis 10: Extrinsic mutation likelihood	419
4.5.11 Hypothesis 11 Intrinsic mutation likelihood	419
4.5.12 Hypothesis 12: Generation time	420
4.5.13 Hypothesis 13: Birth rate dependent strength of	
natural selection	421
4.5.14 Hypothesis 14: Recombination history	421
4.5.15 Hypothesis 15: Sexual selection	422
4.5.16 Hypothesis 16: Hybridisation	424
4.5.17 Hypothesis 17: Sympatric spatial branching	424
4.5.18 Hypothesis 18: Sympatric ecological branching	424
4.5.19 Hypothesis 19: Genetic drift	425
4.5.20 Hypothesis 20: Large adaptive populations	426
4.5.21 Hypothesis 21: Small adaptive populations	426
4.5.22 Hypothesis 22: Cultural evolutionary branching	426
4.5.23 Hypothesis 23: Immigration	426
4.5.24 Hypothesis 24: Emigration	427
4.5.25 Hypothesis 25: Intrinsic evolutionary perturbations	427
4.5.26 Hypothesis 26: Extrinsic evolutionary perturbations	431
4.5.27 Hypothesis 27: Self-organization	432
**	

	4.5.28 Hypothesis 28: Chance	433
	4.5.29 Quality of the data used	433
	4.5.30 Conclusion: the seabird system as a quasi-experimental	
	situation?	434
	4.5.31 Figures of chapter 4	439
	4.5.31.1 Axes scales	439
4.6 Re	sults	538
	4.6.1 Energy and species variation in the seabird system	538
	4.6.2 Alternative parameters and species richness variation	
	in the seabird system	539
	4.6.2.1 Critical points of the conceptual framework	539
	4.6.3 Multiple regression associations	541
4.7 Di	scussion	550
	4.7.1 Are energetic constraints the most likely restriction of	
	species richness variation?	550
	4.7.2 Processes that may explain the results: how to continue	550
	4.7.3 Brief explorative discussion of potential determinants	
	beyond energy flux	552
	4.7.4 Implications of the present study	556
	4.7.4.1 Energy and species richness	556
	4.7.4.2 Application of the quasi-experimental approach	557
Reference	es	558
Appendic	es	597
Chanter	5: 'Biodiversity Wave Mechanics': a Physics for	
Chapter	Living Systems at the Organismic Scale	619
5.1 Int	roduction	619
5.2 Str	rategies of theory construction	620
	5.2.1 Three strategies to construct theory of dynamical	020
	systems	620
	5.2.2 Three strategies to disentangle the complexity of the	
	biosphere	622
	5.2.3 Two ways to formulate evolutionary theories	625
	5.2.4 Two strategies of theory formulation to describe	
	complex systems: formalistic and realistic	626
	5.2.4.1 The conventional notion of mathematical	
	theories: benefits and shortcomings of formalistic	
	theories	627
	5.2.4.2 Cellular automata and the limited analytical	
	tractability of complex systems	627
5.3 'Ri	odiversity wave mechanics'	628

5.3.1 Axioms	629
5.3.2 Processes	631
5.3.3 Target variables	636
5.3.4 An arbitrary, simple example	637
5.3.5 Evolutionary epistemology and the use of cellular	
automata	641
5.3.6 Processes that may keep biodiversity wave mechanical	
systems away from their evolutionary equilibrium	660
5.3.7 Ecological interactions and a peculiarity of biodiversity	
wave mechanics: the 'virtual equilibrium'	660
5.3.8 Phenomenological statistical procedures and	
biodiversity wave mechanics	662
5.3.9 Why biodiversity 'wave mechanics'?	662
5.3.10 Biodiversity wave mechanics: a reinvention of the	
wheel?	665
5.3.11 Biodiversity wave mechanics as a physical theory	669
References	671
Chapter 6: Epilogue. Biodiversity Wave Mechanics, Its	
Applicability to Cultural Evolution and Its Potential Small	
Contribution in Averting the Biodiversity Crisis	679
References	685
Notes	687
Summary	697
Names Index	705
Subject Index	727

X