

Thomas Schuster (Autor)

Purely Peptidic Amphiphiles: Understanding and Controlling their Self-Assembled Structures

https://cuvillier.de/de/shop/publications/313

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Content

C	ontent			1			
In	mpact of the work						
Summary of the thesis							
1.	Intr	oduc	tion	11			
	1.1.	Self-	-assembled structures	11			
	1.2.	Hier	rarchical organization	12			
	1.3.	Fold	ling and self-assembly of amphiphilic molecules	12			
	1.4.	Und	erstanding how nature builds-up hierarchically organized structures	14			
	1.4.	.1.	Primary and secondary structure – from the 1D to the 3D world	14			
	1.4.	.2.	Alternating D, L - amino acid sequences	15			
	1.4.	.3.	Tertiary, quaternary and hierarchical structures in nature	16			
	1.5.	Synt	thetic approach to environmentally responsive materials based on amino acids	16			
	1.5.	1.	Polymerization	16			
	1.5.	.2.	Solid-phase peptide synthesis (SPPS) – control of the primary sequence	17			
	1.5.3.		Recombinant protein expression	19			
	1.6. App		roaches towards controlling and understanding self-assembly				
	of per	otide	-based material	20			
	1.7.	Scop	pe of the thesis	22			
	1.8.	Refe	erences	24			
2. Reversible peptide particle formation using a mini amino acid sequer		le peptide particle formation using a mini amino acid sequence	27				
	2.1.	Intro	oduction	28			
	2.2.	Resi	ults and discussion	30			
	2.2.1.		Peptides and their potential to dimerize	30			
	2.2.2.		Charged amphiphilic peptides – C-K ₃ -gT	31			
	2.2.	.3.	Uncharged amphiphilic peptides – acetylated AcC-X ₃ -gT	34			
	2.2.	.4.	Dipeptide - (AcC-X ₃ -gT) ₂	40			
	2.2.	.5.	Multicompartment micelle hypothesis	40			
	2.3.	Con	clusion	41			
	2.4.	Sup	porting information	43			
	2.4.	1.	Results	43			
	2	2.4.1.	Dimerization probed by GPC	43			

		2.4.1.	Peptide purification and characterization	44	
		2.4.1.	3. Behavior of C-K₃-gT	45	
		2.4.1.	4. Self-assembly of Ac-X ₃ -gT	46	
	2.5.	Ref	erences	49	
3.	Hi	ghly o	rdered gold nanoparticles - peptide composites	51	
	3.1.	Intr	oduction	52	
	3.2. Results		ults and discussion	53	
	3.3.	Con	clusion	56	
	3.4.	Ref	erences	57	
4.	M	olecul	ar thin films produced by short amphiphilic peptides	59	
	4.1.	Intr	Introduction		
	4.2.	Res	ults and discussion	61	
	4.	2.1.	\ensuremath{Dppc} peptide mixtures and pure peptide films at the air-water interface	61	
	4.2.2.		AcC-X ₃ -gT films on template-stripped gold (TSG)	66	
	4.	2.3.	First steps towards a sensor platform using short amphiphilic peptides	71	
	4.2.4.		Mineralization at the air-water interface	72	
	4.3.	Con	clusion	74	
	4.4.	Ref	erences	75	
5.	Fr	om fib	ers to micelles using point mutated amphiphilic peptides	77	
	5.1.	Intr	oduction	78	
	5.2.	Res	ults and discussion	81	
	5	2.1.	Design of amphiphilic peptides	81	
	5.2.2.		Amphiphilic character of the peptide library	81	
	5.	2.3.	Degree of acetylation influences micelle behavior	87	
	5.3.	Con	clusion	89	
	5.4.	Ref	erences	90	
6.	Ex	ploitir	g dimerization of purely peptidic amphiphiles to form vesicles	93	
	6.1.	Intr	oduction	94	
	6.2.	Res	ults and discussion	97	
	6.	2.1.	Tail-to-tail dimerization	97	
	6.	2.2.	Carboxyl dimerization	98	
	6.	2.3.	Charge compensation	101	
	6.3.	Con	Conclusion		
	6.4.	Refe	erences	104	

Content

7.	Exp	erimental part	107
	7.1.	Materials	107
	7.2.	Amphiphilic peptides design and synthesis	107
	7.3.	Peptide purification, post-modification and characterization	108
	7.4.	Peptide particle formation	110
	7.5.	Peptide particle characterization	110
	7.6.	Gold nanoparticle – peptide composite formation	114
	7.7.	Film preparation and characterization	114
	7.8.	Micro-contact printing and immobilization procedure	116
	7.9.	References	117
8.	Ger	neral conclusion and outlook	119
9.	Ack	nowledgments	121
1(). (Curriculum vitae, references and lists of contributions	123
11	L. <i>A</i>	Abbreviations	127