
Chapter 1

Model and Setting

Traditionally the natural sciences rest on two methodological pil-
lars: theory and experiment. In recent years however a third base
has become apparent, which has been driven by the development
of fast and ubiquitous computing power. In various scientific
fields simulations [68] are used to understand the behaviour of
complex systems. They are applied to simulate natural phe-
nomena in fields such as astrophysics, biological evolutionary
research, climate prediction, or medical diagnosis. For exam-
ple in the latter, diagnosis of osteoporosis can be improved by
scanning a bone and extracting a physical model [2]. On this
model physical pressure is then applied in a simulation in order
to predict where the bone is likely to break. Typically huge
amounts of data are used to get reliable predictions from the
simulations. These can not be handled by a single processor.
Instead supercomputers such as IBM’s Blue Gene need to be
employed. These are composed of thousands of processing units.
One major hurdle that lies at the core of handling these machines
is the following. How should the massive amounts of data be
distributed among the processors so that their computing power
is utilised as effectively as possible?

Typically finite element models [19, 62] (FEMs) are used
for simulations of physical phenomena. In these a continuous

1
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2 Chapter 1. Model and Setting

domain of a physical model is discretised into a mesh of sub-
domains (the elements). The mesh induces a graph in which
each vertex is an element and the edges connect adjoining sub-
domains. A vertex then corresponds to a computational task in
the physical simulation at hand. These need to communicate
their intermediate results to neighbouring elements during the
simulation of the model. The tasks need to be scheduled on to a
given number of machines (which corresponds to partitioning the
vertices) so that the loads of the machines (the sizes of the sets in
the partition) are balanced. At the same time the interprocessor
communication (the number of edges between the sets) needs
to be minimised since this constitutes a runtime bottleneck in
parallel-computing. Hence in order to analyse the above setting
we will model it as the problem of cutting a graph into equally
sized parts and using as few edges as possible to do so. This
problem is the main concern of this thesis. We will explore the
boundaries of its solvability by giving algorithms and hardness
proofs. Thus we will apply the more traditional method of theory
in order to shed light on this particular aspect of simulations.

The application to data distribution in parallel-computing
is not the only reason why the problem under consideration
is of genuine practical and theoretical interest. It has a wide
variety of applications including VLSI circuit design [8], image
processing [63, 72], computer vision [43], route planning [13],
and divide-and-conquer algorithms [46, 64]. For the latter, the
aim typically is to cut the graph into two equally sized parts.
This constitutes a special case of the problem. As we will see,
solving this special case also leads to algorithms for the general
case.

Many implementations exist that compute solutions to the
problem under consideration. They all differ in their employed
techniques (see [35, Appendix] for a survey). Some examples of
software packages that are widely used are Metis [34], Scotch [11],
or Zoltan [14]. These heuristics are based on coarsening the given
input graph. This can for instance be done by computing match-
ings and contracting the corresponding edges. This is repeated
several times until the remaining graph is small enough to employ
a cutting algorithm producing a good solution with only a small

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. Putting Practice into Theory 3

runtime overhead. For instance methods based on simulated
annealing or greedy schemes are used. After this the graph is
uncoarsened by reintroducing the contracted edges. During this
process the computed solution is refined by locally improving
the boundaries of the cut out parts. This can for instance be
done using a variant of the Kernighan-Lin algorithm [37]. Typi-
cally these heuristics are very fast. Unfortunately however, no
rigorous guarantees on their solution qualities can be given.

1.1 Putting Practice into Theory

Our viewpoint when studying the problem under consideration is
theoretical. That is, we seek to design algorithms which operate
within rigorous time bounds and produce results whose quality,
when compared to the optimum, is again bounded rigorously.
However we shall always keep the practical application in mind.
This means that we will make sure that the bounds, both in time
requirements and solution quality, are compatible with the needs
of the application. Also, as inputs to our algorithms we shall con-
sider graphs whose characteristics agree with those encountered
in practice. On an abstract level, we consider the k-BALANCED
PARTITIONING problem which is defined as follows (Figure 1.1).

Definition 1.1 (k-BALANCED PARTITIONING). Given a graph
G = (V,E), find a partition V of the n vertices in V into k sets
such that |P | ≤ �n/k� for each part P ∈ V. At the same time
minimise the cut size, i.e. the number of edges in E connecting
vertices from different parts in the partition.

Typically the domain of an FEM is two- or three-dimensional.
In this thesis we focus on the two-dimensional case, as a first
step towards the more general problem. For these FEMs the
corresponding graph is planar. Typically it is given by a regular
tiling of the plane of which two examples are tessellations using
triangles (i.e. triangulations) or quadrilaterals [19, 62]. We focus
on the latter and therefore choose so called solid grid graphs as a
model. These correspond to tessellations into unit sized squares.
Throughout this thesis we will assume that such a graph is given

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Chapter 1. Model and Setting

Figure 1.1: A partition of a graph into k = 3 parts (indicated
by grey circles) with a cut size of 5. Note that a part does not
have to be a connected component.

together with its natural embedding in the plane, where each
vertex is given by two coordinates in N

2 and the edges have unit
length (Figure 1.2).

Definition 1.2 (solid grid graph). A grid graph is a finite
subgraph of the infinite two-dimensional grid. A face of the grid
graph that is bounded (i.e. an interior face) and has more than
four edges surrounding it, is called a hole. If a grid graph is
connected and does not have any holes it is called solid .

We will also consider other types of graphs. In particular
we will consider trees which surprisingly often lead to insights
about solid grid graphs for the problem at hand. This is re-
markable since trees and grid graphs are entirely different from
a combinatorial point of view. For instance trees can have ar-
bitrarily high vertex degrees, while grid graphs have constant
maximum degree. Another measure of comparing the similarity
of a graph with a tree is the tree-width of a graph. Grids are
known [17] to be examples of graphs that have very high tree-
widths and are thereby considered to be very dissimilar to trees.
Also recognising a tree is a trivial task that can be done by a
simple breadth-first search in linear time, while it is NP-hard to
recognise a solid grid graph [7].

In the chapters to come we will consider solving the k-BAL-
ANCED PARTITIONING problem optimally and approximately. We

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. Putting Practice into Theory 5

Figure 1.2: A solid grid graph.

will present corresponding algorithms and hardness results for
these scenarios. We will always keep our model of solid grid
graphs in mind and relate the obtained results to this graph
class. There are two parameters that may be approximated in
the problem under consideration: the cut size and the balance
of the sizes of the cut out parts. Throughout this thesis we
will denote the approximation ratio of the cut size by α. That
is, an algorithm with ratio α computes a solution in which the
cut size does not exceed αC∗, where C∗ is the optimal cut size
of the given input graph. When approximating the balance
we assume that we are given a parameter ε > 0 such that the
sizes of the parts do not exceed (1 + ε)�n/k�. We also consider
approximating the cut size and the balance at the same time.
This is referred to as bicriteria approximation. In this setting
the quality of the solution, both in terms of cut size and balance,
is always compared to the optimum in which the parts have size
at most �n/k� and the cut size is minimised.

Bicriteria approximations for k-BALANCED PARTITIONING have
been studied before. In particular since in general [1] it is NP-
hard to approximate the optimal cut size within any finite factor
α, if the set sizes are required to be at most �n/k�. Also for the
special case when k = 2, commonly referred to as the BISECTION
problem, bicriteria approximations have been considered. They
were used in order to circumvent the known hardness results
when each part is required to have size at most �n/2�. Assum-
ing the Unique Games Conjecture, for this case no constant
approximations to the BISECTION problem can be computed in
polynomial time [38].

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6 Chapter 1. Model and Setting

1.2 An Overview of the Results

In Chapter 2 we begin by considering the special case of the
k-BALANCED PARTITIONING problem when k = 2, i.e. the BISEC-
TION problem. We show that there is an algorithm for solid grid
graphs that solves the BISECTION problem optimally in O(n4)
time. This improves on the previously fastest known algorithm
by Papadimitriou and Sideri [54] which runs in O(n5) time.
Our method takes its main inspiration from the corresponding
algorithm for trees given by MacGregor [47].

We believe that computing the optimal bisection using the
above algorithm is too slow for practical purposes. This is
because typically there will be billions of vertices in an input
graph. Can faster algorithms be found for solid grid graphs
when approximating the bisections? The first idea on how to
answer this question is to consider the structural properties
of an optimum bisection. In particular, we show that in an
optimum solution almost all the cuts needed to partition the
vertices have simple shapes. By a simple shape we mean that
in the natural embedding of the grid graph in the plane, a cut
is either a straight cut through the grid or a cut that has one
right-angled bend. We call a cut in which each cut made has at
most one right-angled bend a corner cut. In Chapter 3 we show
that an optimal corner cut approximates the optimal bisection
of a solid grid graph well. More concretely, for any ε ∈]0, 1]
and m ∈ {0, . . . , n} we prove that there is an optimal corner
cut cutting out m′ ∈ [(1 − ε)m, (1 + ε)m] vertices using only
O(C∗/

√
ε) edges. Here C∗ is the optimal number of edges to

cut out m vertices.

Unfortunately, we do not know how to put the above result
to work directly in order to yield fast algorithms that compute
approximations to BISECTION on solid grid graphs. In [22] an
algorithm computing optimal corner cuts was devised. However
the runtime of this algorithm is O(n4), i.e. the same as for
computing the optimal solution. Despite this, in the remaining
part of Chapter 3, through another indirect route, we show how
corner cuts can be used to approximate the BISECTION problem
on solid grid graphs.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. An Overview of the Results 7

A sparest cut minimises the amount of edges per number of
cut out vertices. We show that through corner cuts we can find
a constant approximation to a sparsest cut in linear time for
solid grid graphs. For these graphs our algorithm improves on
the runtime of the fastest known algorithm [55], which however
computes a sparsest cut for any planar graph. Based on our
algorithm and employing known techniques of Leighton and
Rao [44] we can compute bicriteria approximations to the BISEC-
TION problem. For arbitrary ε > 0 the algorithm cuts out parts
of size at most (1 + ε)�n/2�, and the cut size is approximated
within α ∈ O(1/ε3). On solid grid graphs this algorithm runs in
O(n1.5) time.

We also combine a recursive method by Simon and Teng [65]
with our algorithm for sparsest cuts. This allows us to compute
an approximation to k-BALANCED PARTITIONING on solid grid
graphs in O(n1.5 log k) time. The solution contains sets of size
at most 2�n/k�, while α ∈ O(log k). Since we improved on
the runtime to compute sparsest cuts, we also improve the
runtimes of the two resulting algorithms on solid grid graphs.
Additionally we obtain a faster algorithm for k-BALANCED PAR-

TITIONING than by known techniques applying the Klein-Plotkin-
Rao Theorem [40] to spreading metrics [20]. A solution computed
by this technique also has sets of size at most 2�n/k�. However
the cut size is approximated within a constant factor. This shows
that we are able to trade the solution quality for faster runtimes.

From a practical point of view an approximation factor of 2
on the balance of the set sizes is not very attractive. This is
because it implies a huge imbalance on the load of the machines in
parallel-computing. Can we improve this approximation factor?
In Chapter 4 we consider computing partitions in which each
part has size at most (1 + ε)�n/k� for arbitrary ε > 0. We
show that for edge-weighted trees there is an algorithm that
runs in polynomial time if ε is constant. Interestingly the cut
cost, i.e. the weighted cut size, of the computed solution is at
most that of the optimum in which the sets have size at most
�n/k�. Hence α = 1, which means that for trees we obtain a
polynomial time approximation scheme (PTAS) with respect
to the balance. This PTAS can subsequently be used on cut-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

8 Chapter 1. Model and Setting

based hierarchical decompositions [48, 57] in order to find a
bicriteria approximation for any general edge-weighted graph.
Such a decomposition is a set of trees that approximates the cut
structure of the graph by a logarithmic factor. As a consequence
the computed cut cost is approximated within α ∈ O(log n),
while each cut out part has size at most (1 + ε)�n/k�. This
result improves on a previous one by Andreev and Räcke [1]
where α ∈ O(log1.5(n)/ε2). In particular this also solves an
open problem posed by the latter authors of whether the cut
cost needs to increase when ε decreases. We will argue that
our algorithm is unlikely to perform better on solid grid graphs.
Hence even though the above algorithm computes solutions for
general graphs, it seems as if no improvements can be gained by
our techniques when applied to solid grid graphs.

For the k-BALANCED PARTITIONING problem on solid grid
graphs we have so far considered two algorithms that both com-
pute bicriteria approximations. Do both the balance and the cut
size need to deviate from optimum? For general (disconnected
but unweighted) graphs this is the case since it is known that
approximating the cut size within any finite factor is NP-hard [1]
if each part is required to be of size at most �n/k�. For graph
classes in which the graphs are connected this result is however
not feasible. Therefore in Chapter 5 we give a positive answer
to the question when considering restricted graphs. We prove
that for solid grid graphs it is NP-hard to approximate the cut
size within nc for any constant c < 1/2. For trees we show
that their ability to have arbitrary vertex degrees leads to an
even worse situation, since for these graphs the statement is
true for any constant c < 1. Both of these hardness results are
asymptotically tight.

The above hardness results are gained using a reduction
framework that can be applied to arbitrary graph classes. We
identify some sufficient conditions that a graph class has to fulfil
in order to be hard for the k-BALANCED PARTITIONING problem.
Intuitively these conditions entail that using a limited amount
of edges, only a small number of vertices can be cut out from
a graph. A grid graph resembles a discretised polygon and
therefore also shares their isoperimetric properties. We are able

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. An Overview of the Results 9

to use this fact in order to meet the conditions for solid grid
graphs. For trees on the other hand, we gain this condition using
high vertex degrees. Considering this contrast between constant
degree grids and high degree trees, it is natural to ask what
the hardness of the problem on constant degree trees is. We
show in Chapter 5 that even if the maximum degree of the tree
is at most 5 the k-BALANCED PARTITIONING problem remains
NP-hard. For maximum degree 7 we can even show that the
problem is APX-hard. That is, there exists some constant within
which it is NP-hard to approximate the cut size for these trees.
In contrast, an algorithm by MacGregor [47] approximates the
cut size within α ∈ O(Δ logΔ(n/k)), where Δ is the maximum
degree. Together these results show that the complexity of the
problem grows with the degree when considering trees.

Another question comes to mind when considering the at-
tained bicriteria approximation algorithms for the k-BALANCED
PARTITIONING problem. There seem to exist two types of these
algorithms. One of them is fast but the ratio on the balance is
unsatisfactory. The other can approximate the optimal balance
arbitrarily close but is slow. This is because the runtime increases
exponentially when ε decreases. Can an algorithm be found that
combines fast runtime with a high-quality approximation of the
balance? This would be ideal for practical applications. In par-
ticular it seems conceivable that an algorithm could compensate
the cost of computing sets arbitrarily close to equal-sized, not in
the runtime but instead in the cut size. We are hence aiming for
a fully polynomial time algorithm for which the approximation
factor on the balance may increase when ε decreases. However
in Chapter 5 we show that, unless P=NP, no reasonable such
algorithm exists for solid grid graphs. In particular this is true
even when α = nc/εd for any constants c and d where c < 1/2.
For trees we can even show this for c < 1, while for general
graphs we prove it for any finite α. Hence the trade-off between
fast runtime and approximating the balance arbitrarily close, as
given by the above two algorithms, is necessary. These hard-
ness results are also obtained using the reduction framework
mentioned above. They are the first bicriteria inapproximability
results for the k-BALANCED PARTITIONING problem.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

10 Chapter 1. Model and Setting

1.3 The Structure of this Thesis

Throughout this thesis we assume that the reader is familiar
with basic graph theoretic and algorithmic concepts. For a
comprehensive summary of the former we refer to the book by
West [71], and to the books by Garey and Johnson [30] and
Vazirani [69] for the latter. Each chapter of this thesis will
begin with a short abstract outlining the presented results. We
will then give an introduction including an overview of the used
techniques and the related work. We will sketch the methods used
in the results of the related work that have a direct connection
to the presented work. A chapter will be closed by a section
giving further observations and open problems for the obtained
results. For easy access, an index on the definitions of all used
terms in this thesis is given at the very end. We will use similar
typographic variable names for variables of the same category.
A glossary can be found at the very end of this thesis.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

