
Chapter1
Introduction

1.1 Motivation

Semidefinite Optimization is generally appreciated as the most exciting in-
novation in Convex Programming in the 1990’s; see for instance [Fre99]. It
constitutes a generalization of Linear Programming, where the cone of non-
negative vectors is replaced by the cone of positive semidefinite matrices.
That is, we are supposed to minimize a linear function over a set of positive
semidefinite matrices, where this set of matrices is described by a collection
of linear inequalities.
Nowadays, an impressive amount of real-life optimization problems, from
nearly all fields of engineering, can be represented or approximated by
semidefinite optimization problems. For instance, Semidefinite Optimization
is used in Control [BGFB94], in Structural Design [BTN97], or in Statis-
tics [BV04], only to name a few. Probably the most famous applications
are semidefinite relaxations of hard combinatorial problems; see for instance
[GW95, NRT99].
Many modern real-life optimization problems – including up-to-date semidef-
inite optimization problems – are of very large-scale. Generally speaking,
the emergence of large-scale optimization problems has two reasons. One
the one hand, it has become relatively easy and cheap to collect and store
huge amounts of data over the last few years. For instance, we may men-
tion here web-based social platforms, customer bonus cards, or surveillance
cameras, where massive amounts of data are collected every day. On the
other hand, the real-life systems that we study and try to model as opti-
mization problems are getting more and more complex. The relatively new
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2 1. Introduction

field of Systems Biology serves as a prime example here. In Systems Biology,
researcher try to analyze, reconstruct, and understand highly complex bio-
logical systems using – among others – optimization tools; see for instance
[HNTW09, PRP04, TS08].

Motivated by these facts, we study the practical tractability of large-scale
semidefinite optimization problems in this thesis. Semidefinite optimization
problems that involve matrices of size a few hundred times a few hundred
and with a few thousand constraints can be solved up to a very high ac-
curacy by Interior-Point methods [Ali95, NN93]. However, if we go beyond
this problem size, it takes Interior-Point methods too long to derive an ap-
proximate solution in practice. More formally, Interior-Point methods have
a theoretical worst-case running time that is of the order

O (√
m+ n

[
mn3 +m2n2 +m3] ln [(m+ n)/ε]

)
,

where m denotes the number of constraints, n the matrix size, and ε the
target accuracy; see Chapter 6 for a review. The logarithmic dependence
on ε makes Interior-Point methods a tailored tool for finding highly accurate
solutions, whereas the fast – although polynomial – growth in m and n limits
the size of problems that can be handled in practice. In order to comply with
the modern trends in Semidefinite Optimization, that is, in order to be able to
solve large-scale semidefinite optimization problems in practice, the following
question arises immediately:

“Assume that we tolerate a moderate complexity increase with respect to the
solution accuracy ε, say from ln[1/ε] to 1/ε, or even to 1/ε2. Does there exist
an algorithm for solving semidefinite optimization problems with a running
time that is below the complexity estimate of Interior-Point methods with
respect to the matrix size and the number of constraints?”

This is the opening question of this thesis. Note that a moderate solution
accuracy is usually not a barrier in practice, as two or three accuracy digits
are typically sufficient for practical applications.

In 2007, Arora and Kale [AK07] introduced an alternative approach for solv-
ing slightly structured large-scale semidefinite optimization problems. They
perform a Binary Search over the objective function values. At every itera-
tion of this search, they are supposed to answer a feasibility question. The
answer to this question is derived by a Matrix Multiplicative Weights Update
method. In total, they need to perform, roughly speaking, O (

ln[1/ε]/ε2
)
it-

erations of this method in order to find a solution with approximation error
ε > 0. By “roughly speaking”, we refer to the fact that the complexity result
depends also on other problem parameters such as the scaling of the problem.
At every iteration of this method, the exponentiation of a symmetric matrix
and some other computations not exceeding the cost of O(mn2) arithmetic
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1. Introduction 3

operations are supposed to be carried out. Provided that we compute the
exponential through an eigendecomposition of the symmetric matrix, we end
up with a method that requires in total, roughly speaking,

O (
[n3 +mn2] ln[1/ε]/ε2

)

arithmetic operations to compute an approximate solution. In case of sparse
matrices, the term mn2 in the above complexity result can be reduced in
accordance to the sparsity pattern of the matrices. Arora and Kale [AK07]
also discuss some strategies to replace the exact value of the matrix expo-
nential by a random approximation in their Matrix Multiplicative Weights
Update method. For instance, they present a random approximation that is
based on the Johnson-Lindenstrauss Lemma [JL84] and on an appropriate
truncation of the matrix exponential Taylor series. Using this randomization
procedure, we end up with an algorithm whose complexity grows with the
order of O(ln[1/ε]/ε5) with respect to solution accuracy ε > 0. Because of
this fast growth in ε, we do not elaborate more on this randomization of their
method in this thesis.

The Matrix Multiplicative Weights Update method, which was intro-
duced simultaneously by Arora and Kale [AK07] and by Warmuth et al.
[TRW05, WK06], can be seen as a generalization of Multiplicative Weights
Update methods to matrices; see [AHK05] for a survey of these methods.
The basic concept of Multiplicative Weights Update methods plays a cru-
cial role in the development of algorithms in Machine Learning and in Data
Mining, or, more generally, in Computer Science. For instance, AdaBoost
[FS97] – one of the top ten Data Mining algorithms (see [WKR+07] for the
complete list) – is based on the Hedge algorithm [FS97], which follows the
same basic construction as Multiplicative Weights Update methods. Inter-
estingly enough, the Hedge algorithm and (Matrix) Multiplicative Weights
Update methods have the same analytical complexity as Dual Averaging
schemes [Nes09]: the iteration count of all these methods grows with the
order O(1/ε2). This observation gives rise to the conjecture that the Hedge
algorithm and (Matrix) Multiplicative Weights Update methods are partic-
ular instances of Dual Averaging schemes.

Let us now get back to Semidefinite Optimization. When we compare the
complexity results of Interior-Point methods and Arora and Kale’s scheme for
solving slightly structured semidefinite optimization problems, we make the
following two observations. On the one hand, the complexity of Arora and
Kale’s method grows only linearly in the number of constraints. This is in
sharp contrast to Interior-Point methods, where the complexity result grows
with the power 3.5 with respect to m. On the other hand, there is a tremen-
dous gap (namely, a factor of 1/ε2) in the worst-case complexity bounds of
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4 1. Introduction

Interior-Point methods and Arora and Kale’s scheme. These observations
result in the following adaption of the opening question:

“Does there exist a method for solving slightly structured semidefinite opti-
mization problems whose iteration count grows, roughly speaking, with the
order O(1/ε) and whose iteration cost is given by O(n3 +mn2)?”

Smoothing Techniques [Nes05] and Mirror-Prox methods [Nem04a] were
introduced recently. These powerful methods can be applied to non-
differentiable convex problems that have a very specific structure, namely
to a huge variety of matrix saddle-point problems. The matrix saddle-point
problems that we consider in this thesis correspond all to the problem of
minimizing the maximal eigenvalue of convex combinations of symmetric
matrices. When we speak of matrix saddle-point problems, we henceforth au-
tomatically refer to the maximal eigenvalue minimization problem. Interest-
ingly enough, the iteration count of Smoothing Techniques and Mirror-Prox
methods grows with the desired order O(1/ε), where ε denotes the solution
accuracy. However, these powerful methods are not directly applicable to
generic semidefinite optimization problems, as these problems do not satisfy
the structural requirements of the algorithms. Nevertheless, this approach
seems to be very promising, because Chudak and Eleutério [CE05] success-
fully applied these methods to large-scale linear optimization problems with
up to millions of variables and constraints. As linear programs constitute a
particular subclass of semidefinite optimization problems, it seems to be very
natural to extend their approach to the more general class.

In the situation where the decision variables are matrices, Smoothing Tech-
niques and Mirror-Prox methods suffer the same computational bottleneck
as the Matrix Multiplicative Weights Update algorithm: they need to deter-
mine the exponential of a symmetric (n × n)-matrix at every iteration; see
[Nes07] and [Nem04a] for the details. There exists plenty of different ways to
determine or to approximate these exponentials; see [ML03] for the classical
survey on this topic. Standardly, this exponentiation is performed through
an eigendecomposition of the symmetric matrix, requiring O(n3) arithmetic
operations and, consequently, hampering the resolution of problems with
huge matrices. In order to extend the class of matrix saddle-point problems
that can be successfully handled by Smoothing Techniques or Mirror-Prox
methods in practice, we need to find strategies that allow us to replace this
matrix exponential by an approximation that can be computed faster.

1.2 Goals of the thesis

Let us list the goals of this thesis.
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1. Introduction 5

A. Apply Smoothing Techniques and Mirror-Prox methods to
semidefinite optimization problems

In order to close the dramatic gap between the complexity results of Interior-
Point methods and Arora and Kale’s scheme [AK07] with respect to the so-
lution accuracy, we want to apply Smoothing Techniques and Mirror-Prox
methods to slightly structured semidefinite optimization problems. However,
these problems do not match the structural requirements of Smoothing Tech-
niques and Mirror-Prox methods. In a preliminary step, we therefore need
to find an appropriate reformulation of semidefinite optimization problems,
that is, we are supposed to recast them as matrix saddle-point problems.

B. Reduce the number of iterations of Smoothing Techniques in
practice

Smoothing Techniques are a two-stage procedure. In a first step, an appro-
priate smooth approximation of the objective function is built. This con-
struction exploits the very specific form by which non-differentiability enters
the problem. In a second step, we apply an optimal First-Order method
[Nes04, Nes05] to the smooth auxiliary problem. At every iteration of this
optimal First-Order method, the Lipschitz constant of the gradient of the
smoothed objective function is used to determine the next iterate. Clearly,
this constant is a global parameter of the problem and might be very pes-
simistic for the local environment of the algorithm’s current iterate. We want
to derive a strategy that allows us to replace this global constant by local
estimates in the optimal First-order method [Nes04, Nes05].

C. Reduce the iteration cost in Mirror-Prox methods

As pointed out above, both Smoothing Techniques and Mirror-Prox methods
require the computation of a matrix exponential at every iteration when
applied to matrix saddle-point problems. When we solve problems with huge
matrices, this operation becomes critical with respect to the running time of
the method. We want to overcome this difficulty by replacing the exact
value of the matrix exponential in Mirror-Prox methods by a randomized
approximation that can be computed faster. We perform this discussion for
Mirror-Prox methods, as this topic was studied in a joint project with Arkadi
Nemirovski, the designer of Mirror-Prox methods.

D. Interpret the Hedge algorithm as a Dual Averaging scheme

As shown in [CBL06], the Hedge algorithm can be seen as a particular in-
stance of Mirror-Descent methods [NY83], which are a subclass of Dual Aver-
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6 1. Introduction

aging schemes. In this thesis, we want to study this interpretation, point out
its severe inconsistencies, and give a complete and consistent discussion of
the Hedge algorithm in the context of Dual Averaging schemes. In particular,
given the knowledge we gain from this new perspective on the Hedge algo-
rithm, we hope to define alternative versions of this scheme, which perform
even more successfully in theory and in practice than the vanilla method.

1.3 Structure of the thesis

This thesis is split in three parts.

Part I: Analytical complexity of solution methods in Convex Op-
timization

In Part I of this thesis, we lay the theoretical and methodical foundation of
this thesis. We introduce general optimization problems, review all properties
of both the objective function and the feasible set which are relevant for this
thesis, and study the computational tractability of optimization problems in
Chapter 2. In Chapter 3, we discuss some Black-Box Optimization methods,
namely Dual Averaging schemes, Primal-Dual Subgradient methods, Mirror-
Descent algorithms, and optimal First-Order methods. In particular, we
present a refinement of optimal First-Order methods which complies with
Goal B. We conclude Part I by reviewing Smoothing Techniques, Mirror-
Prox schemes, and Interior-Point methods in Chapter 4.

Part II: A new perspective on the Hedge algorithm

Part II consists only of Chapter 5 and addresses exclusively Goal D. In this
chapter, we recast the Hedge algorithm in the context of Dual Averaging
schemes and derive three new versions of this method, which have theoretical
convergence guarantees that are better or at least as good as the convergence
result for the vanilla scheme. Numerical results show that all these modified
methods perform better than their original counterpart in practice.

Part III: Approximately solving large-scale semidefinite optimiza-
tion problems

Part III represents the core of this thesis. In Chapter 6, we give an introduc-
tion to large-scale Semidefinite Optimization and derive the full complexity
result of Interior-Point methods for semidefinite optimization problems. We
recast the Matrix Multiplicative Weights Update method in the context of
Dual Averaging schemes and discuss the approach of Arora and Kale [AK07]
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1. Introduction 7

for solving slightly structured semidefinite optimization problems in Chapter
7. The first part of this chapter can be seen as a generalization of some of the
results from Chapter 5 to a matrix setting. In Chapter 8, we achieve Goal A
by reformulating slightly structured semidefinite optimization problems in a
form to which we can apply not only Primal-Dual Subgradients methods and
Mirror-Descent schemes, but also advanced tools such as Smoothing Tech-
niques and Mirror-Prox methods. That is, we recast these problems as ma-
trix saddle-point problems. In the same chapter, we discuss the complexity
of Mirror-Descent schemes when applied to these problems. We particular-
ize Smoothing Techniques for matrix saddle-point problems in Chapter 9. In
particular, we obtain a procedure that can be used to solve slightly structured
semidefinite optimization problems. Importantly, the complexity estimate of
this procedure is of the form O(1/ε) with respect to the solution accuracy
ε > 0. In Chapter 10, we study the application of Mirror-Prox methods
to matrix saddle-point methods and discuss a randomized computation of
matrix exponential approximations. We conclude this part by showing some
numerical results in Chapter 11.
The conclusions and an outlook are presented in Chapter 12. In the Ap-
pendix, we give a short introduction to regular norms and collect some tech-
nical proofs.
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