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Complexes, which are of particular interest in this work, are molecular entities formed by 

loose association involving two or more component molecular entities.1 Coordination 

compounds of metals and ligands are the most prominent example of complexes. Such 

species, formed in the reaction of a Lewis acid (metal) and a Lewis base (ligand), are 

widespread in nature, e.g. in metalloproteins. The local environment of the metal centre 

influences its electronic structure and also determines the possible interactions with other 

molecules. The subsequent chemical transformation can then be very selective as only certain 

molecules can bind to the metal and react mainly in one direction. This idea underlays the 

premise of homogeneous catalysis with transition metals. In the early 80’s it was anticipated 

that in the next 20 years homogeneous catalysis would be understood well enough to design 

new catalysts in a rational way.2 Nowadays, this task is still a great challenge even though we 

have an understanding of a large number of reactions. Quantum chemical calculations can 

with this respect constitute an attractive alternative to expensive experimental trial and error.  

In the present work the structures and reactivities of various polynuclear complexes are 

studied. The project has been carried out in the framework of the Transregio-

Sonderforschungsbereich 88 "Cooperative Effects in Homo- and Heteronuclear Complexes 

(3MET)". In this context, theoretical calculations were undertaken to examine the electronic 

structure of a number of metal- and metalloid-containing systems in order to explain their 

properties and reactivities. The applications presented include the analysis of the reaction 

paths and the design of new paracyclophane-based ligands for the dialkylzinc additions to 

unsaturated aldehydes, the characterisation of unusual bonding patterns in large metalloid 

cluster compounds, accurate calculations of the structure of small nickel clusters as isolated 

molecules and solvated by alcohol molecules as well as studies of molecular oxygen 

activation by a cobalt complex. Important aspects of this work are careful benchmark studies 

which allow reliable predictions. It turned out that for some problems only expensive, highly 

correlated wave-function based methods were able to give qualitatively correct answers 

whereas for other properties more economical DFT computations provided satisfactory 

results. Furthermore, strong emphasis is put on the comparison with experimental findings. 

The topics presented in this work cover a wide range of structural problems (molecular 

geometry and electronic structure), calculations of spectroscopic data as well as the heart of 

chemistry – reaction mechanisms. The latter are not only used to explain observed phenomena 

but also to rationally design new, more selective and more efficient catalysts. In most cases a 

less is more strategy3 is applied to understand qualitatively the investigated systems, i.e. 

properties which are of particular interest are computed with the smallest possible model 
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systems. Such reductions allow to carefully check the methods, which are then applied to 

qualitative analysis of large, metal-containing systems.  

The homogeneous metallic catalysts are complicated many-body systems and metallic 

nanoparticles are already in use as catalysts.4 On our way to fully understanding such nano-

sized systems or clusters, which are midway between a molecule and the bulk material, like 

germanium and tin metalloid clusters discussed in chapter 0, we need methods that provide a 

compromise between accuracy and cost (time of calculations, computer resources needed). On 

the one hand very accurate methods have been developed over the years and we know how to 

systematically improve our results but on the other hand the size of the systems of interest 

limits the applicability of most of these methods. In the last two decades density functional 

theory (DFT), mainly in the Kohn-Sham formulation,5 was without doubts the most 

successful approach for these systems. However, Jacob’s ladder proposed by Perdew,6 seems 

to be rather unstable – higher rungs (better functionals by design) do not always give better 

results for a property of interest.7 This was exactly the case in structural studies of small 

aluminium and tin clusters.8 Shortly, we will see that for the case of the nickel dimer, DFT 

can essentially give any bond distance. Another problem of DFT functionals is the absence of 

long range, weak interactions.9 Unfortunately, accurate geometry optimisation with post-

Hartree-Fock methods for systems consisting of more than 50 atoms are extremely time 

consuming and – at some level of system size and method complexity – simply impossible. 

Also, calculations become a complicated task when static correlation starts to play an 

important role, i.e. the investigated system cannot be described by a single-determinant 

method (like DFT or HF) because of near degeneracies of the electronic states. This is 

particularly the case when molecules are far from the equilibrium geometries, e.g. if bonds are 

significantly elongated. Other prominent manifestations of static correlation are 3d transition 

metal compounds with partially filled d shells. Once the static correlation problem is solved 

(or is not present) the dynamic correlation due to interaction of the electrons still remains an 

important contribution to the total energy. While DFT partially covers this type of correlation, 

the HF wave function must be augmented by excited configurations in order to account for 

dynamic correlation. 

In most computations concerning homogeneous catalysis with metal complexes, DFT 

methods are employed due to the size of investigated systems.10,11 However, the unbalanced 

treatment of static and dynamic correlation make the transition metal chemistry a hard test for 

any functional because most of the popular exchange-correlation functionals were optimised 

and benchmarked mainly against compounds consisting of main group elements. 12 Many 

authors emphasize the need to test a set of DFT functionals before making final 

conclusions.10,12 A typical approach in computations of large, multimetallic systems is to 

compare various functionals with available experimental data. However, such an approach 

will certainly fail if experimental numbers have large uncertainties or are not available. This 
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work aims to go beyond the usual DFT calculations, i.e. for each system reliable wave 

function based reference data will be obtained and used to gain additional information about 

the investigated chemical structure or reaction. 

This thesis is organised as follows. The presentation of results is preceded by the theoretical 

background of the methods used. This short outline focuses on the basics of selected quantum 

chemical concepts and aims to show the scope and limitations of various approaches. The 

application section is comprised of four topics. It begins with the investigation of the addition 

reactions of dialkylzinc to -conjugated systems. The reaction is catalysed by bulky 

paracyclophane-based ligands and constitutes a challenging theoretical problem. On the one 

hand the long range interactions have to be handled properly because of the presence of bulky 

groups in the catalyst whereas on the other hand the correlation effects in the transition states 

have to be described consistently in order to predict the major product of the reaction 

quantitatively correct by transition state theory. Next, multireference calculations on large 

germanium and tin cluster compounds will give insights into the unusual bonding situation in 

these compounds. Unlike the transition states in the dialkylzinc additions, these molecules 

possess some significantly elongated bonds, but there is no compensation by formation of 

another bond. Consequently, multireference calculations have to be employed in order to 

explain the nature of this interaction. The third topic investigated in this thesis is the structure 

of small nickel clusters. To describe electron correlation in such systems in a balanced way a 

number of quantum-chemical methods are benchmarked with the complicated electronic 

structure of the nickel dimer. Selected methods are then used in studies of the electronic 

structure of Ni2− as well as in the geometry and ground state of the nickel trimer and its anion. 

The gained knowledge is then used in the calculations of the properties of small nickel 

clusters interacting with alcohol molecules. The obtained data can be directly compared with 

upcoming experimental measurements in order to derive the geometry of the clusters. The 

application section is closed by investigations of the molecular oxygen activation with a 

cobalt complex where the experience from all previously studied systems is combined in 

order to explain the reorganisation of spins in the analysed reaction. The energetic effect of 

the reaction as well as relative energies of states with various spin multiplicities are shown to 

be highly dependent on the method used. At the same time, the electronic structure of the final 

adduct with oxygen, e.g. the location and number of unpaired electrons, will directly reflect 

the reactivity of the system towards unsaturated alcohols. Final conclusive remarks can be 

found at the end in the summary. 
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The aim of this chapter is to give an outline of the methods applied throughout this work. 

Theories which are well established and comprehensively described in text books are just 

briefly introduced. The focus is laid on recently developed methods as well as techniques that 

made them applicable to large molecular systems. The chapter is divided into four major 

parts. The first introduces the Schrödinger equation and discusses fundamental 

approximations which make quantum theory applicable to systems larger than the hydrogen 

atom. Moreover, through a short discussion of the Dirac equation we introduce approximate 

methods for the handling of relativistic corrections. The next two parts address two distinct 

approaches in quantum chemical calculations: single reference – HF-based and DFT – and 

multi reference (MR) methods. The chapter is closed with a description of the techniques 

common to all of the reviewed methods like basis sets, potential energy surface exploration or 

molecular vibrations and thermochemical calculations. For sake of simplification atomic units 

are used. 

 

 

Quantum chemistry was built on the time-independent non-relativistic Schrödinger 

equation:13 

 �̂�Ψ(𝐱, 𝐑) = 𝐸Ψ(𝐱, 𝐑) (1) 

where Ψ is a wave function of the space and spin coordinates x of N electrons and spatial 

coordinates R of M nuclei, E is the total energy associated with the system described by Ψ 

and �̂�  is the Hamilton operator defined as: 

 �̂� = − 12 ∑ ∇𝑖2
𝑁

𝑖=1 − 12 ∑ 1𝑀𝐴 ∇𝐴2
𝑀

𝐴=1 − ∑ ∑ 𝑍𝐴𝑟𝑖𝐴
𝑀

𝐴=1
𝑁

𝑖=1 + ∑ ∑ 1𝑟𝑖𝑗
𝑁

𝑗>𝑖
𝑁

𝑖=1 + ∑ ∑ 𝑍𝐴𝑍𝐵𝑅𝐴𝐵
𝑀

𝐵>𝐴
𝑀

𝐴=1  (2) 

In eq. (2) variables A and B run over all M nuclei of charge ZM while i and j over all N 

electrons. The first two terms describe the kinetic energy of electrons (𝑇�̂�) and nuclei (𝑇�̂�). 

The next three terms define the potential energy of electron – nucleus interactions (𝑉�̂�𝑛), 

electron – electron interactions (𝑉�̂�𝑒) and nucleus – nucleus interactions (𝑉�̂�𝑛), respectively. 

In chemistry, we used to think about the molecules in context of their structure, i.e. spatial 

distribution of atoms. However, neither electrons nor nuclei are static particles. The 

conceptual bridge between chemistry and physics, that at the same time greatly reduces the 

complexity of the Schrödinger equation, is called adiabatic approximation.14 The idea here 

relies on the fact that even the smallest nucleus, a proton, is over three orders of magnitude 
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heavier than an electron. Thus, nuclei move much slower than electrons and it is assumed that 

the total wave function of the system can be expressed in the following form15 

 Ψ(𝐱, 𝐑) ≈ Ψ𝑒(𝐱, 𝑅)𝑓(𝑹) (3) 

In the above equation, Ψ𝑒(𝐱, 𝑅) parametrically depends on the fixed positions R of the nuclei, 

i.e. for any R there is a certain mathematical form of Ψ𝑒(𝐱, 𝑅). The function 𝑓(𝑹) depends not 

only on R but also on the direction of the vector R and therefore can be used in the description 

of molecular vibrations and rotations. We then group the Hamiltonian into two groups – 

electronic (�̂�𝑒) and nuclear (𝑇�̂� + 𝑉�̂�𝑛): 

 �̂� = (𝑇�̂� + 𝑉�̂�𝑛 + 𝑉�̂�𝑒) + (𝑇�̂� + 𝑉�̂�𝑛) = �̂�𝑒 + (𝑇�̂� + 𝑉�̂�𝑛) (4) 

In the adiabatic approximation, Ψ𝑒(𝐱, 𝑅) is an eigenfunction of the electronic Hamiltonian 

�̂�𝑒. In calculation of 𝑓(𝑹) we assume that the movement of nuclei and electrons is 

uncoupled, i.e. the nuclei ‘feel’ the average field arising from the fixed configuration of 

electrons for certain R and therefore the position of electrons determine the potential energy 

of the nuclei. The last statement is a subject of the Born-Oppenheimer approximation16 which 

allows to use such concepts like the shape of a molecule or potential energy surface of a 

chemical system. 

From now on we will focus solely on the electronic problem 

 �̂�Ψ(𝐱) = 𝐸Ψ(𝐱) (5) 

where �̂� = �̂�𝑒 as defined in eq. (4), E is electronic energy and Ψ(𝐱) = Ψ𝑒(𝐱, 𝑅) for clarity. 

 

The Schrödinger equation can be solved exactly only for a small number of model problems. 

If a many-body problem has to be solved then an approximate wave function is needed. It is 

easy to show that the energy 𝜀, calculated with any trial wave function Φ will be always larger 

or equal to the energy of the ground state 𝐸0: 

 𝜀[Φ] = ⟨Φ||�̂�||Φ⟩⟨Φ|Φ⟩ ≥ 𝐸0 (6) 

If we now assume that Φ is a finite, continuously differentiable and normalized function (is a 

Q-class function) then we have a clear prescription of obtaining approximate wave function 

which is the variational principle. Such a trial wave function is usually constructed from a 

linear combination of P known basis functions {Ψ𝑖}: 

 Φ = ∑ 𝑐𝑖Ψ𝑖
𝑃

𝑖=1  (7) 

The variational parameters 𝑐𝑖 are optimised in order to get the lowest possible energy in the 

given set of basis functions. This method, firstly formulated by Ritz,17 paved the way for a 
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class of quantum-chemical  methods called variational where the energy is minimised by a 

systematic refinement of the trial wave function. 

 

The variational principle introduced in the previous paragraph is a lighthouse for the search of 

an optimal wave function. However, it says nothing about the form of this function. 

Analytical solutions of Schrödinger equation for model systems give some one-electron wave 

functions but the many electron analogues are not known. From physical considerations we 

only know that they have to be functions of Q-class that depend on the same variables like the 

exact solution as well as have to be antisymmetric under permutation of electrons (change the 

sign upon relabeling of an electron pair). Slater18 proposed N-electron function of the 

following determinant-form: 

 ΨSlater = 1
√𝑁! |||

| 𝜙1(1) … 𝜙1(𝑁)⋮ ⋱ ⋮𝜙𝑁 (1) … 𝜙𝑁 (𝑁)|||
|
 (8) 

In this definition 𝜙𝑖 are orthonormal one-electron spinorbitals (products of orbitals and spin 

functions) and the factor before the determinant is a normalization factor. The Slater 

determinant (8) has desired properties: 

• changing the labels of electrons means exchange of columns of the determinant – the 

function is antisymmetric, 

• two electrons cannot occupy the same spinorbital (Pauli principle) – in this case two 

columns are equal and the determinant vanishes. 

Most of the quantum chemical methods use the Slater approach either in one-determinant 

form (single reference methods) or in multi-determinant formulation (multireference 

methods). Nevertheless, one should have in mind that the wave function in form of eq. (8) 

does not depend on the interelectronic distance 𝑟12. Therefore, in order to at least 

approximately describe the electronic cusp one has to use large orbital basis sets. A different 

approach is to explicitly correlate the motion of electrons which can be achieved for example 

by means of f12 methods.19 However, due to its mathematical complexity this approach is still 

limited to medium-sized molecules containing main-group elements. 

 

Ground state energies and properties of molecular systems obtained with eq. (5) suffer from 

the non-relativistic treatment of motion. While this effect is negligible for light elements, it 

contributes significantly to the chemical behaviour of heavy elements mainly through 

contraction of orbitals.20 Recently, an extreme example of the importance of relativistic 

correction has been shown for the calculation of the standard voltage of the lead-acid 

battery.21 It appeared, that only 20% of the voltage can be recovered in non-relativistic 

calculations. 
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The treatment of a finite speed of light with all its consequences requires the usage of the 

electron-positron Dirac equation:22  

 [𝛃𝑐2 + 𝑐(𝛂 ⋅ 𝐩) + 𝑉 ]ψ = 𝑖ℏ 𝜕𝜕𝑡 ψ;  ψ = [ψ𝐿
ψ𝑆] (9) 

where c is the speed of light, V an external potential, p the momentum operator, and ,  are 

the 4 × 4 Dirac matrices.23 The spinor ψ which appears in eq. (9) in place of Schrödinger’s 

wave function consists of a so-called small (ψ𝑆) and large (ψ𝐿) component. In Dirac theory 

we are mainly interested in the stationary electronic solution. The Dirac equation for an 

electron in a molecular field has the following form: 

 ℎ𝐷ψ = 𝐸+ψ 
ℎ𝐷 = 𝛃′𝑐2 + 𝑐(𝛔 ⋅ 𝐩) + 𝑉 = [ 𝑉 𝑐(𝛔 ⋅ 𝐩)𝑐(𝛔 ⋅ 𝐩) 𝑉 − 2𝑐2] = [ℎ𝐿𝐿 ℎ𝐿𝑆ℎ𝑆𝐿 ℎ𝑆𝑆 ] 
𝛃′ = 𝛃 − 𝐈4 

(10) 

where 𝛔 is a vector that collects the Pauli spin matrices and I4 denotes a 4 × 4 identity matrix. 

The one-electron Dirac operator hD can be used in place of the nonrelativistic one-electron 

operator in the electronic structure calculations. To take into account the relativistic effects in 

the two electron repulsion terms, g(1,2), the Breit terms24-26 have to be considered in addition 

to the classical 1/r12 term:27 

 𝑔(1,2) = 1𝑟12 − 𝜶(1) ⋅ 𝜶(2)𝑟12 + 12 [𝜶(1) ⋅ 𝜶(2)𝑟12 − (𝜶(1) ⋅ 𝑟12)(𝜶(2) ⋅ 𝑟12)
𝑟123 ] (11) 

In conjunction with hD for the one electron part, the resulting Hamiltonian is the Dirac-

Coulomb-Breit (DCB) Hamiltonian. 

The small and large components of the spinor  are coupled through eq. (9) by the coupling 

operator R: 

 ψ𝑆 = 𝑹ψ𝐿 ;  𝑹 = (2𝑐2 − 𝑉 + 𝐸+)−1𝑐(𝛔 ⋅ 𝐩) (12) 

Thus, the one-electron operator hD can be block-diagonalised by some unitary transformation: 

 𝑼 †ℎ𝐷𝑼 = 𝑼 † [ℎ𝐿𝐿 ℎ𝐿𝑆ℎ𝑆𝐿 ℎ𝑆𝑆 ] 𝑼 = [ℎ̃++ 00 ℎ̃−−] (13) 

The operator ℎ̃++ will then only act on the large, electronic component. The exact unitary 

transformation is given as: 

 𝑼 = [ Ω+ −𝑹†Ω−𝑹Ω+ Ω− ] ; Ω+ = 1
√1 + 𝑹†𝑹 ; Ω− = 1

√1 + 𝑹𝑹† (14) 

However, the unitary transformation (14) is usually done in an approximate way because the 

coupling R depends explicitly on the electronic energy (see eq. (12)). For example by taking 

 𝑹 = (2𝑐2 − 𝑉 + 𝐸+)−1𝑐(𝛔 ⋅ 𝐩) ≈ 12𝑐 (𝛔 ⋅ 𝐩) (15) 
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and applying the unitary transformation to the Dirac Hamiltonian one obtains the Pauli one-

electron Hamiltonian:28 

 ℎ̂𝑃𝑎𝑢𝑙𝑖(𝑖) = 𝑉 + 𝑇𝑖 − 𝑝𝑖48𝑐2 + 14𝑐2 𝛔[(∇𝑉 ) × 𝐩𝑖] + 18𝑐2 (∇2𝑉 ) (16) 

where only terms to O(c-2) were retained. In the Hamiltonian (16), the non-relativistic terms 

are extended by three relativistic corrections: mass-velocity, spin-orbit and Darwin term, 

respectively.23 The Hamiltonian which combines the Pauli approach to the one-electron part 

and the Breit correction to the two-electron interactions is called the Breit-Pauli 

Hamiltonian.29 However, the computations with the resulting operator are rather demanding, 

especially for the spin-orbit terms. Thus, in many cases the effective nuclear charge 

approximation is used.30 Alternatively, the mean-field approach of Hess et. al.31 can be 

employed. Other possibilities to carry out the unitary transformation (14) include the zeroth-

order regular approximation (ZORA)32–34 or the Douglas-Kroll-Hess (DKH) method.35–37 In 

the latter, the spin-dependent terms are usually neglected (scalar DKH).29 Therefore, the spin-

orbit effects can be included in the next step, e.g. from the spin-orbit operator based on the 

Pauli Hamiltonian (16): 

 ℎ𝑆𝑂(𝑖) = ∑ 𝑍𝐴𝑒2
4𝑐2𝑟𝑖𝐴3

𝛔 ⋅ 𝐥𝐴𝑖
𝑁

𝐴=1  (17) 

where the orbital angular momentum operators 𝐥𝐴𝑖 are defined with respect to each nucleus A. 

Even more routinely, scalar relativistic effects are introduced into non-relativistic calculations 

using relativistic effective core potentials (ECP).38 This approach is based on the observation 

that relativistic effects have the largest influence on the low lying, core electrons, which in 

chemical reactions do not play as important a role as the valence electrons. Therefore, core 

electrons can be substituted by a special effective potential which then is used in the 

Hamiltonian from eq. (5) while valence shells are described in the usual way with accordingly 

optimised exponents of the basis sets.  

 

 

The Hartree-Fock method belongs to the class of variational methods with a trial function 

consisting of a Slater determinant. By minimising the energy with respect to spinorbitals one 

can derive the canonical Hartree-Fock equations: 

 𝐹 ̂𝜙𝑖 = 𝜖𝑖𝜙𝑖 (18) 

where 𝜙𝑖 are canonical Hartree-Fock orbitals (molecular orbitals, MOs) and 𝜖𝑖 are respective 

orbital energies. The Fock operator, 𝐹 ̂, is an effective one-electron operator defined as a sum 

of three operators: 

 𝐹 ̂ = ℎ̂ + 𝐽 ̂ − 𝐾̂ (19) 


