Anna Christine Peteret (Autor)

Prediction of biological membrane penetration of poorly soluble drugs using surface activity profiling

Goethe University • Institute of Pharmaceutical Technology
Prof. Dr. Jennifer B. Dressman

Anna Christine Peteret

Prediction of biological membrane penetration of poorly soluble drugs using surface activity profiling

https://cuvillier.de/de/shop/publications/6120

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de
TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 New chemical entities (NCE-Discovery) 1

1.2 ADME-Properties 5
 1.2.1 Absorption 6
 1.2.2 Distribution 6
 1.2.3 Metabolism 7
 1.2.4 Elimination 8

1.3 Solubility 8

1.4 Transport across lipid bilayers (intestinal/brain) 12
 1.4.1 Morphological aspects of intestinal drug absorption 12
 1.4.2 Mechanisms of intestinal transport 14
 1.4.3 Mechanisms of blood brain barrier penetration 17

1.5 In vitro models for prediction of membrane penetration 21
 1.5.1 Octanol/water partition coefficients 22
 1.5.2 Polar surface area 23
 1.5.3 Lipinski’s rules of five 23
 1.5.4 Parallel artificial membrane permeation assay 24
 1.5.5 Caco-2 cells 25
 1.5.6 Biopharmaceutical Classification System 25
 1.5.7 Biopharmaceutical Drug Disposition Classification System 27
 1.5.8 Summary of established methods 28

1.6 The air/water interface - a model for the lipid bilayer 29

1.7 Surface tension and amphiphilicity 30
 1.7.1 Surface tension measurement 33
 1.7.2 Thermodynamic characterization 34

2 AIM OF THIS STUDY 39

3 MATERIALS AND METHODS 41

3.1 Standard materials 41
 3.1.1 Standard chemicals 41
 3.1.2 Standard equipment 42

3.2 Standard media 43
 3.2.1 Buffer solution to simulate the small intestine 43
 3.2.2 Buffer solution to simulate the blood pH 7.4 44

3.3 Organic solvents 45
 3.3.1 Chemical structure of organic solvents 45

3.4 Substance used as test set for oral absorption 46
 3.4.1 Surface active compounds 46
 3.4.2 Chemical structure 48
 3.4.3 Physicochemical and pharmacokinetic properties of the test set compounds 53

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.
3.5 Substances used as a test set for blood brain barrier penetration 55
3.5.1 Physicochemical properties of the test set compounds for blood brain barrier penetration studies 55
3.5.2 Pharmacokinetic data and log bb of the test set compounds 57

3.6 Sample preparation for surface tension measurements 59
3.6.1 Preparation of aqueous stock solutions of test set compounds by the traditional ‘shake-flask’ method 59
3.6.2 Preparation of organic solvent in buffer solution for intrinsic surface activity determination 60
3.6.3 Preparations of non-aqueous stock solutions of the test set compounds 61
3.6.4 Sample preparation after pre-dissolving in organic solvent 61
3.6.5 Preparation of micelle vehicle solution 63
3.6.6 Preparation of drug stock solution for surface activity profiling in micelle solutions 63
3.6.7 Sample preparation for the test set compounds in micelle vehicle solutions 63
3.6.8 Preparations of stock solutions for blood brain barrier measurements 64
3.6.9 Sample preparation for blood brain barrier SAP measurements 65

3.7 Surface tension measurement 65
3.7.1 Delta-8 tensiometer 65
3.7.2 Measurement principle 66
3.7.3 Calibration and Quality Control Test 68
3.7.4 Surface tension measurement of aqueous drug solutions 68
3.7.5 Surface tension measurement of the drugs pre-dissolved in organic solvents 68
3.7.6 Surface tension measurements using drugs dissolved in micellar solutions 69
3.7.7 Surface tension measurements for blood brain barrier penetration 69
3.7.8 Surface activity profiling (SAP) 69
3.7.9 Profile analysis – calculation of physicochemical parameters 71
3.7.10 Surface activity profiling - micelle vehicle 74

3.8 Statistics 76

4 RESULTS AND DISCUSSION 77

4.1 Surface activity profiling of poorly soluble compounds for the prediction of oral absorption 77
4.1.1 Solubility determination 77
4.1.2 Surface tension measurement from aqueous buffer solution 80
4.1.3 Surface activity profiling in the presence of organic solvents 87
4.1.4 SAP parameter after solubility enhancement with organic solvents 98
4.1.5 Correlation of maximum surface pressure and oral drug absorption 102
4.1.6 Utilization of solvent mixture in buffer 108
4.1.7 Conclusion from various sample preparation 116
4.1.8 Using micelle solution for surface activity measurements 117
4.1.9 Development of a sample preparation scheme for absorption screening 124

4.2 SAP as a prediction method of oral drug absorption 125

4.3 Comparison of different in vitro models for the prediction of oral drug absorption 129

4.4 Surface activity profiling of compounds for blood brain barrier prediction 133
4.4.1 Surface tension measurements 133
4.4.2 Surface activity profiling parameter 137
4.4.3 Physiological Effects influencing Blood Brain Barrier Penetration 143
4.4.4 Conclusion: SAP as a prediction model for blood brain barrier penetration 145

5 SUMMARY 147
6 GERMAN SUMMARY

7 APPENDIX

7.1 Surface activity profiling for the prediction of oral drug absorption
7.1.1 Surface activity profiling from aqueous media
7.1.2 Surface activity profiling from DMSO/buffer mixture
7.1.3 Surface activity profiling from DMF/buffer mixture
7.1.4 Surface activity profiling from DMSO/DMF-buffer mixture
7.1.5 Surface activity profiling from DMA/buffer mixture
7.1.6 Surface activity profiling from NMP/buffer mixture

7.2 Surface activity profiling for Blood Brain Barrier-Test set in aqueous buffer solution

8 REFERENCES

9 CURRICULUM VITAE