
Introduction

The present thesis deals with the efficient adaptive numerical integration of dynam-
ical contact problems. This is the core problem in the fast and robust simulation
of stresses arising in a real patient’s knee joint for different kinds of loading situa-
tions. The topic is of high interest in the field of computer-assisted therapy planning,
which aims at the generation of a ”virtual patient“ [17]. This tool allows the design
of effective treatment options and precise surgery strategies within a clinical envi-
ronment. Potential tasks of patient-specific techniques in orthopedics are osteotomic
interventions and the construction and selection of implants or fixation devices.

For realistic predictions of therapeutical manipulations, numerical simulation and
optimization are applied on a detailed three-dimensional geometry of the individual
patient’s knee (obtained from anatomical CT or MRT image data). In view of a
reasonable clinical application, the necessary computations have to be performed on
local workstations in clinics within short time frames. Moreover, the solutions have
to be resilient enough to serve as a basis for responsible medical decisions. With
regard to these conditions, highest level requirements have to be set on the efficiency
and accuracy of the applied numerical techniques.

The appropriate approach to cope with this mathematical challenge is the con-
struction of an adaptive numerical integrator for the dynamical contact problem.
For this purpose, dynamical contact problems have to be analyzed precisely from
both the analytical and the numerical point of view.

Dynamical Contact Problems. In 1933, Antonio Signorini introduced the fric-
tionless static contact problem of a linearly elastic body with a rigid foundation [85],
which today is called Signorini problem. Since then, the modeling of contact phe-
nomena classically employs Signorini’s contact conditions in displacements, which
are based on a linearization of the physically meaningful non-penetrability of masses.

Following the same approach in the time-dependent case leads to highly nonlin-
ear second-order variational problems, where the actual zone of contact is a priori
unknown. When the phase of contact changes, shocks are caused, which identify
the hyperbolic structure of the problem. This inhibits general regularity of an evo-
lution, even if the rest of the data are smooth. Partial regularity results and some
discussion on the subject have been published in [13, 23, 68].

For dynamical contact problems between a linearly elastic body and a rigid foun-
dation that are formulated via Signorini’s contact conditions, the first existence and
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uniqueness results were obtained by Duvaut and Lions [23]. They studied problems
with prescribed time-constant normal stresses where the contact surface is known in
advance. However, up to date, existence results have only been provided for special
cases such as some simple geometric settings and one-dimensional problems [68,83].
A general existence or even uniqueness theory in conjunction with pure linear elas-
ticity is still missing.

The serious mathematical problems encountered in proving well-posedness basi-
cally originate from the discontinuity of the velocities at contact. The assumption
of viscous material behavior allows at least the derivation of existence results for
unilateral dynamic contact problems: Jarušek analyzed a frictionless viscoelastic
body with singular memory [42,44]. Viscoelastic materials satisfying a Kelvin-Voigt
constitutive law were studied by Kuttler and Shillor [62] and Cocou [13]. Kuttler
and Shillor proved existence for the case of frictional contact and a moving rigid
foundation, while Cocou considered a problem with nonlocal friction. Migòrski and
Ochal investigated a class of problems modeled by hemi-variational inequalities [74].
In 2008, Ahn and Stewart established existence for frictionless dynamical contact
problems between a linearly viscoelastic body of Kelvin-Voigt type and a rigid obsta-
cle [6]. A survey of existence and uniqueness results is given in the monograph [25]
by Eck, Jarušek, and Krebeč.

The papers cited above primarily concern existence results for dynamical contact
problems. Uniqueness and continuous dependence on the initial data have not been
proven up to now, neither in the purely elastic nor in the viscoelastic case. The
fundamental mathematical difficulties with such results can be traced back to the
intrinsic non-smoothness of the problem emerging from Signorini’s contact condi-
tions. For this reason, the requirement of exact non-penetration of the bodies is
often relaxed by using regularization techniques in the analytical models. However,
for the medical applications discussed above, any violation of the contact constraints
is unacceptable.

Numerical Integration. Over the last decades, a large amount of work has been
done on the design of numerical methods for solving dynamical contact problems,
which is and remains a challenging task. An overview on several known time dis-
cretization schemes can be found, e.g., in the monograph [65] or in the papers [22,59].
Among them, the classical Newmark method is one of the most popular numerical
solvers, which is also used in the wide-spread finite element analysis program Nas-

tran. Unfortunately, it is well-known that this scheme may lead to an unphysical
energy blow-up during time integration and numerical instabilities at dynamical
contact boundaries may occur. For this reason, Kane, Repetto, Ortiz, and Mars-
den introduced a contact–implicit version which is energy dissipative in contact,
but still unable to suppress the undesirable oscillations [46]. Recently, Deuflhard,
Krause, and Ertel proposed a contact–stabilized variant, which avoids the unphysi-
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cal oscillations at contact interfaces and is still energy dissipative [19]. For related
stabilizations see [87, 88].

Laursen, Chawla, and Love have designed time integration schemes of New-
mark type with predominant focus on energy conservation of the discretized solu-
tion [66,67]. Such approaches typically lead to possible interpenetration originating
from a discretized persistency condition. However, the biomedical applications in
mind require strict non-penetration. For the same reason, enforcement with penalty
methods or enforcement with contact conditions in velocities are ruled out.

A different approach for reducing artificial oscillations at contact boundaries has
recently been suggested by Khenous, Laborde, and Renard [47, 48]. Their mass
redistribution method is based on completely removing the mass in a small strip
on the contact boundaries. The algorithm has been further improved by Hager,
Hüeber, and Wohlmuth in view of computational cost [31]. However, the scheme
is formulated within the method of lines framework, which in general inhibits the
development of efficient adaptivity in space. In contrast, the contact–stabilization
by Deuflhard et al. leaves the mass matrix unchanged and can easily be applied for
arbitrary spatial discretization.

In the absence of contact, any symmetric variant of Newmark’s method is equiva-
lent to the Störmer-Verlet scheme, which is well-known to be second-order consistent
and convergent (see, e.g., the textbook [33] of Hairer, Lubich, and Wanner). In the
presence of contact, the question of consistency and convergence has not been solved
yet for any of the discretization schemes presented above. This is due the high irreg-
ularities encountered at contact interfaces in the constrained problem, which inhibit
the derivation of viable estimates for the local discretization errors via the classical
approach.

Adaptivity. The efficient and reliable simulation of the motion of a human knee
joint requires a stable numerical integrator for dynamical contact problems, which
allows for adaptivity both in time and in space. An equidistant mesh can not be
expected to be adequate for reaching a given accuracy of the approximation with
a reasonable computational effort. However, until now, the topic of an adaptive
timestep control for discretizations of dynamical contact problems has completely
been avoided both in engineering and in mathematical literature. This is mainly
due to the lack of perturbation and consistency results in the constrained situation.

The present thesis will work out an efficient adaptive time integrator for friction-
less dynamical contact problems in viscoelasticity that are formulated on the basis
of Signorini’s contact conditions. Apart from medical treatment planning, the issue
is of wide need in many different application areas such as structural mechanics or
metal forming processes.
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Outline

Chapter 1 will deal with the mathematical model used to describe frictionless dy-
namical contact between two viscoelastic bodies fulfilling the Kelvin-Voigt material
law. Both the strong and weak problem formulation are presented, which are based
on Signorini’s contact conditions for bilateral contact. Moreover, conservation prop-
erties and the validity of a persistency condition will be discussed. Chapter 2 will
be devoted to the numerical integration of dynamical contact problems. Here, a de-
tailed theoretical and numerical analysis of the classical, the contact–implicit, and
the contact–stabilized Newmark method will be given. The presentation will moti-
vate the development of an improved contact–stabilized version, which is the time
discretization scheme of interest in this thesis.

In a first step towards an adaptive timestep control, a norm in function space
has to be determined in which a perturbation result is satisfied even in the presence
of contact. By reason of the present unclear situation in view of well-posedness
of dynamical contact problems, Chapter 3 will concentrate on a stability study
under perturbations of the initial data for both the elastic and the viscoelastic case.
This will necessitate the definition and interpretation of a stability condition that
characterizes a suitable class of contact problems. In a second step, the construction
of an adaptive timestep control requires the derivation of a consistency result and
the corresponding consistency order. In order to fill the lack of such knowledge for
Newmark methods under contact constraints, Chapter 4 starts with an investigation
of the Newmark schemes in function space. Then, consistency error estimates will be
derived in the specific norm found in the earlier perturbation theory and in a further
discrete norm. Moreover, the consistency behavior of the Newmark methods in the
special case of permanent active contact will be analyzed. Subsequently, a novel
proof technique will be introduced in Chapter 5, which allows showing convergence
of the improved contact–stabilized Newmark methods in both norms. This requires
in particular the derivation of perturbation results for the scheme, which are again
based on a suitable stability condition.

Finally, in Chapter 6, an adaptive timestep control will be devised in the improved
contact–stabilized Newmark method (ContacX). On the basis of a theoretical and
numerical investigation of an asymptotic error expansion of the Newmark scheme,
established extrapolation techniques will be transferred to the algorithm in order to
construct a comparative scheme of higher-order accuracy. This allows the suggestion
of a problem-adapted error estimator and timestep selection which also cover the
presence of contact. Moreover, the actually achieved global discretization error of the
adaptive timestep control will be discussed. In Chapter 7, an illustrative numerical
example will be given followed by a prototype of a dynamical simulation of a human
knee joint.
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