Inhaltsverzeichnis

1	Einleitung					
2	Gru	indlag	en	5		
	2.1	Halble	eiter und Halbleiterlaser	5		
	2.2	Verdü	nnte Nitride	11		
3	Ga(NAsP)-der Weg zum Halbleiterlaser auf Silizium	15		
	3.1	Das n	eue Materialsystem Ga(NAsP)	15		
	3.2 Messtechnik					
		3.2.1	Zeit-und temperaturaufgelöste Photolumineszenzmessun-			
			gen	19		
		3.2.2	Die Strichlängenmethode	24		
	3.3	Ga(N)	AsP) auf GaP	28		
		3.3.1	Temperaturabhängige Photolumineszenz messungen $\ .$.	28		
		3.3.2	Zeitaufgelöste Photolumineszenzmessungen	33		
		3.3.3	Messung der optischen Verstärkung	39		
		3.3.4	Auswirkungen des N-Gehaltes auf die optische Qualität .	39		
		3.3.5	Der Einfluss von Sb-Surfactants	42		
		3.3.6	Einfluss des Barrierenwachstums auf die optische Qualität	52		
	3.4	Ga(N)	AsP) auf Si	57		
		3.4.1	Einfluss des erhöhten Stickstoffgehaltes in			
			Ga(NAsP)/Si auf die optische Qualität	57		
		3.4.2	Einfluss der Quantenfilmanzahl-und dicke	63		
		3.4.3	Einfluss der Barrieren	64		
		3.4.4	Einfluss unterschiedlicher P/Ga und As/Ga Konzentra-			
			tionen	65		
		3.4.5	Vergleich zwischen experimentell bestimmten und mit ei-			
			ner mikroskopischen Vielteilchentheorie simulierten op-			
			tischen Verstärkung	67		
		3.4.6	Einfluss der Anregungsenergie auf die ASE	69		
		3.4.7	Zusammenfassung	69		
	3.5	Entwi	cklung neuer Messtechniken	71		
		3.5.1	Die Hakki-Paoli Methode	71		
		3.5.2	Die Transmissionsmethode	72		
		3.5.3	Entwicklung von neuen Messtechniken für die Charakte-			
			risierung von Halbleitern	74		

 \sim

4	Gru 4.1 4.2 4.3	dlagen der Holographie75nterferenz, Kohärenz75Holographie76.2.1Grundprinzip77.2.2Photorefraktive Holographie79.2.3Digitale Holographie83.ichtquellen90	
5	Hold 5.1 5.2 5.3	graphie in der Halbleitercharakterisierung93Digitale Holographie an elektrisch gepumpten Dioden94.1.1 Die Kramers-Kronig Relation und der α -Faktor94.1.2 Messung des α -Faktors mit der digitalen Holographie97Detektion von photothermischer Deformation von Halbleitern97nit der digitalen Holographie108.2.1 Photothermale digitale Holographie109.2.2 Photothermale digitale Holographie an einer Solarzelle115Diskussion117	
6	Tief 6.1 6.2 6.3 6.4	ngefilterte digitale Holographie 119 Optische Kohärenztomographie 119 Oull-field swept-source Optische Kohärenztomographie 120 Oigitale Holographie 126 .3.1 Probleme der digitalen Holographie bei der Aufnahme von mehrschichtigen Proben 126 .4.1 Tomographische Messungen mit der tiefengefilterten digitalen Holographie 129 .4.2 Angular spectrum filtered FF-SS-OCT 142	
7	Einz 7.1 7.2 7.3 7.4	zelschussholographie Multiplexing in Volumenhologrammen Full-field swept-source Optische Kohärenztomographie mit sequentieller holographischer Zwischenspeicherung Einzelschussholographie mit sequentiell gemultiplexter holographischer Zwischenspeicherung Diskussion	
8	Vers 8.1 8.2	ärkte digitale Holographie 161 Photorefraktives Zweiwellenmischen	

9 Zusammenfassung

			S.	

185