
Part I

Approximation Algorithms
for Conflict-free Vehicle
Routing on Bidirectional

Networks



Chapter 1

Introduction

In the first part of this thesis, we investigate the conflict-free routing of ve-
hicles through a network of bidirectional guideways. Conflicts are defined in
a natural way, i.e., vehicles cannot occupy the same resource at the same
time, hence forbidding crossing and overtaking. The task is to find a routing
consisting of a route selection and a schedule for each vehicle, in which they
arrive at their destinations as quickly as possible.

Such conflict-free routing algorithms are needed in various applications in lo-
gistics and transportation. A prominent example is the routing of Automated
Guided Vehicles (AGVs). AGVs are often employed to transport goods in
warehouses (for survey papers we recommend [GHS98, Vis06]), or to move
containers in large-scale industrial harbors [SV08]. The guideways can be
tracks or any sort of fixed connected and bidirectional lane system. Other
related application settings are the routing of ships in canal systems [PT88],
locomotives in shunting yards [FLKH05], or airplanes during ground move-
ment at airports [GBM+02, ABR10].

Conflict-free vehicle routing problems can be divided into online problems,
where new vehicles with origin-destination pairs are revealed over time, and
offline problems, where the vehicles to route are known in advance together
with their origin-destination pairs. Here, we concentrate on the offline prob-
lem, which is also often a useful building block for designing online algorithms.

Algorithms for conflict-free routings either follow a sequential or concurrent
routing paradigm. Sequential routing policies consider the vehicles in a given
order, and select a route and schedule for each vehicle such that no conflict
occurs with previously routed vehicles (see [KT91, MKGS05, KJR07] for se-
quential routing examples in the context of AGVs). Concurrent approaches
take into account multiple or all vehicles at the same time. Whereas the higher
flexibility of those approaches opens up possibilities to obtain stronger rout-
ings than the sequential paradigm, they usually lead to very hard optimiza-
tion problems. Furthermore, they are often difficult to implement in practice.
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Typically, the routing problem is modeled as an Integer Program (IP) which
is tackled by IP solvers [Oel08], column generation methods [FLKH05] or
heuristics without optimality guarantee [PT88, GBM+02, KBK93].

Sequential algorithms are thus often more useful in practice due to their
computational efficiency but suffer from the difficulty of finding a good se-
quence to route the vehicles. Furthermore, the theoretical guarantees of these
approaches are often weak. The goal of this work is to address these short-
coming of sequential routing algorithms. Most of the results presented in the
following are also published in [SZ11].

1.1 Problem Formulation

We consider the following problem setting which captures common structures
of many conflict-free vehicle routing problems.

Conflict-Free Vehicle Routing Problem (CFVRP). Given is a undi-
rected connected graph G = (V,E), and a set of k vehicles Π with origin-
destination pairs (sπ, tπ) for all π ∈ Π. Origins and destinations are also
called terminals. A discretized time setting is considered with vehicles resid-
ing on vertices. At each timestep, every vehicle can either stay (wait) on its
current position or move to a neighboring vertex. Vehicles are forbidden to
traverse the same edge at the same timestep, also when driving in opposite
directions, and no two vehicles are allowed to be on the same node at the same
time. A routing not violating the above rules is called conflict-free. The goal
is to find a conflict-free routing minimizing the makespan, i.e. the number of
timesteps needed until all vehicles reach their destination.

The CFVRP is a natural first candidate for modelling and analyzing routing
problems in a variety of contexts. Clearly, it omits application-specific details
and makes further simplifying assumptions.

As a relaxation of the conflict definition above, we assume that vehicles can
only be conflicting while in transit, i.e., no conflict is possible before departure
and after arrival. The departure time of a vehicle is the last timestep that the
vehicle is still at its origin, and the arrival time is the earliest time when the
vehicle is at its destination. We call this relaxation the parking assumption.
The parking assumption is natural in many of the listed applications since
the terminal node occupations are often managed by separate procedures. In
AGV systems the dispatching (task assignment) is usually separated from
the routing process and takes care of terminal node occupations. In airport
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ground movement problems, airplanes are assigned to runways and gates be-
fore airplane routing starts. When routing ships through a canal system,
the terminals represent harbors with usually enough space for conflict-free
parking of all arriving and departing vessels.

1.2 Related Work

The model setting investigated in [KBK93, Spe06, Ste08] is very similar to the
one used here. The differences lie mostly in the modelling of waiting vehicles,
which block edges in their setting. In [KBK93], only designated edges can
be used for waiting. However, these variations do not significantly change
the problem, and the results can easily be transferred. The main reason why
we use the CFVRP setting introduced above is that it leads to a simplified
presentation of the algorithms.

CFVRP has many similarities with packet routing [Sch98, PSW09], where the
goal is a conflict-free transmission of data packets through cable networks.
The crucial difference is that the conflict notion in packet routing is relaxed.
It allows for several packets to occupy a node at the same time, as nodes
represent network routers with large storage capacity. The concept of edge-
conflicts is essentially the same as in the present setting and models the limited
bandwidth of the transmission links. Hence, the CFVRP setting can as well
be seen as a packet routing problem with unit capacities on every node.1

Some sequential routing approaches. We briefly discuss some variants
of sequential routing schemes, emphasizing on approaches used later when
presenting the algorithms.

The presumably simplest approach is to serially send one vehicle after an-
other on a shortest route to the destination, such that a vehicle departs as
soon as the previous one has arrived. The obtained makespan is bounded
by k · L, where L is used as the maximum origin-destination distance over
all vehicles. Since L is a lower bound on the optimal makespan OPT, this
is a k-approximation. Interestingly, for general graph topologies, no efficient
algorithm was known to substantially beat this approach, i.e. with a o(k)
approximation guarantee.

1There are approximation results for packet routing with buffer size 1 in [adHS95].
However, contrary to the CFVRP, they consider bidirectional edges on which two packages
can be sent concurrently in opposite directions.
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Still, several stronger routing paradigms are known and commonly used in
practice. An improved sequential routing policy, which we call simply se-
quential routing, is the following procedure as introduced in [KT91, MKGS05].
Vehicles are considered in a given order, and for each vehicle a route and a
schedule (timetable) is determined with earliest arrival time, avoiding con-
flicts with previously scheduled vehicles. For a fixed ordering of the vehicles,
a sequential routing can be obtained efficiently, e.g. by finding shortest paths
in a time-expanded graph. Sequential routing is often applied with given
origin-destination paths for all vehicles, in which case the task is only to
find a schedule for each vehicle that determines how to traverse its origin-
destination path over time.

For given origin-destination paths, the following restricted version of sequen-
tial routing algorithms, called direct routing, often shows to be useful. In
direct routing, see e.g. [BMIMS04] for the corresponding approach in packet
routing, vehicles are not allowed to wait while in transit, i.e., once a vehi-
cle leaves its origin, it has to move to its destination on the given origin-
destination path without waiting. An advantage of direct routing is that
vehicles only block a very limited number of vertex/time slot combinations.

Combining this concept with the sequential routing, the direct sequential al-
gorithm is obtained. Here an ordering of the vehicles is given, as well as a
source-destination path for each vehicle. Considering vehicles in the given or-
dering, the routing of a vehicle is determined by finding the earliest possible
departure that allows for advancing non-stop to its destination on the given
path, without creating conflicts with previously routed vehicles.

When fixing the origin-destination paths to be shortest paths, sequential rout-
ing and its direct variant perform at least as good as the trivial serial algo-
rithm. However, for unfortunate choices of the routing sequence, one can
observe that the resulting makespan of both approaches can still be a factor
of Θ(k) larger than the optimum (see [Ste08] for details).

Further related results. Spenke [Spe06] showed that the CFVRP is NP-
hard on grid graphs. The proof implies that finding the optimal priorities for
sequential routing is also NP-hard.

Polynomial routing policies with approximation quality sublinear in k are
known for grid graphs. Spenke introduces a method for choosing a routing
sequence with a makespan bounded by 4OPT + k. An online version of the
problem was investigated by Stenzel [Ste08], again for grid topologies.
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can have bad performance when the number of route choices of near-shortest-
path lengths are limited. For grid topologies, the above-mentioned algorithm
of Stenzel [Ste08] takes advantage of the fact that grid graphs contain at least
two disjoint routes of almost the same length for each pair of vertices.

1.3 Outline

On the negative side we present in Chapter 2 hardness results showing that
there is not much hope to obtain exact solutions even for seemingly simple
settings. The results give a theoretical explanation for the difficulties encoun-
tered in practice when looking for good orderings for sequential routings.

On the positive side, we consider in Section 3.1 the CFVRP problem on trees,
and present a priority ordering of the vehicles leading to a direct routing
algorithm with a makespan bounded by 4OPT + k. This is achieved by
dividing the vehicles into two groups, and showing that each group admits an
ordering which leads only to very small delays stemming from vehicles driving
in opposite directions.

For general instances, without restrictions on the graph topologies, we show
how the tree algorithm can be leveraged to obtain a O(

√
k)-approximation,

thus leading to the first sublinear approximation guarantee for the CFVRP
problem. A crucial step of the algorithm is to discharge high-congestion
vertices by routing vehicles on a well-chosen set of trees. The purely mul-
tiplicative approximation guarantee is obtained despite the +k term in the
approximation guarantee for the tree algorithm by exploiting results from the
packet routing literature. More precisely, using an approach of Srinivasan and
Teo [ST97], we determine routes for the vehicles with a congestion C bounded
by C = O(OPT), and never route more than C vehicles over a given tree.
These results are presented in Section 3.2.

Additionally, an efficient randomized method with makespan O(log3 k)OPT+
k is presented for general graph topologies in Section 3.3. This approach relies
on obtaining strong tree embeddings in a compacted version of the graph,
therefore avoiding a dependency of the approximation guarantee on the size
of the graph, which would result by a straightforward application of tree
embeddings.

Computational results published in [Ste08] indicate that sequential algorithms




