
Chapter 1

Introduction

Hemivariational inequalities have been first introduced by P. D. Pana-
giotopoulos in [46, 47] as a generalization of variational inequalities to
describe several problems arising in mechanics and engineering. They
involve nonconvex, generally nonsmooth energy potentials called non-
convex superpotentials. Such kind of energy potentials results from the
fact that nonmonotone, possibly multivalued contact laws are considered.
This contact phenomena appear in several mechanical problems, such as
nonmonotone friction and unilateral conditions, nonmonotone material
laws, nonmonotone interface laws, etc. A large number of problems in
structures and solids leading to nonconvex and nonsmooth energy po-
tential can be found, e.g., in [41, 42, 46]. Among them we mention the
adhesion problem from contact mechanics. Problems of such kind occur
when two bodies are in adhesive contact, i.e., if they are glued on a sur-
face by an adhesive material. The adhesive layer is assumed to be very
thin compared with the geometry of the body, and due to damaging it
exposes a nonlinear, nonsmooth behaviour. As a result a nonmonotone,
multivalied adhesion law arises between the adhesion reaction force and
the normal displacement on the contact boundary. Note that at some
point the adhesion reaction force falls to zero. This happens when the
gap between the bodies has grown too large. Another wide class of prob-
lems is related to the composite materials or sandwich structures. We
point out the delamination problems, see [7], where two laminated lay-
ers under loading are considered. The binding interlayer material obeys
again a nonmonotone law with complete vertical branches in the normal
direction on the contact boundary.
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Observe that all nonmonotone, multivalued relations mentioned above
can be expressed by means of the generalized gradient of Clarke, and
therefore lead to nonconvex locally Lipschitz superpotential in contrast
to the Tresca friction case, where a nonsmooth, but convex functional is
considered. Because of the lack of convexity of the energy superpoten-
tial, the hemivariational inequalities have generally nonunique solutions.
The existence of a solution has been steadily discussed in the last years
starting with Panagiotopoulos in the 1990s. For the mathematical back-
ground of hemivariational inequalities we refer also to the seminal work of
Naniewicz and Panagiotopoulos [45] and the references therein. Parallel
to the mathematical analysis, the framework of Haslinger et al. [33] pro-
vides a numerical solution scheme for hemivariational inequalities with
finite elements, establishes a convergence analysis and presents numerical
results based on bundle type methods.
In this thesis, we combine regularization techniques with the finite ele-
ment method to approximate hemivariational inequalities with a super-
potential expressed by a maximum or minimum function. In general, the
regularization method is used to approximate a non-differentiable term
by a sequence of differentiable ones. Convergence is obtained when the
regularizing parameter ε > 0 tends to zero. A wide variety of applica-
tions of the regularization method can be found, e.g., in [5, 23, 24, 34,
37, 45, 52, 54]. In this work, we extend various forms of the regulariza-
tion method in view of their application to hemivariational inequalities.
First, we use a regularization procedure to smooth the nonsmooth su-
perpotential. All regularizations are based on convolution and involve a
calculation of a multivariate integral. The latter is, however, technically
more demanding and not easily applicable in practice. Nevertheless, for
the class of nonsmooth functions mentioned above and their composi-
tions, like nested min-max function, the smoothing approximations can
be computed explicitly. More precisely, since the nonsmooth functions
we consider here can be expressed as a composition of the plus function
with smooth functions, all our regularizations are based in fact on a class
of smoothing approximations for the plus function [13, 21, 49, 50, 55, 57].
Secondly, we provide a finite element approach for the regularized prob-
lem and present convergence results.
The thesis is organized as follows:
In Chapter 2, we briefly summarize some important definitions and basic
results from the theory of nonsmooth analysis that will be used in subse-
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quent chapters. We introduce the generalized directional derivative and
the Clarke’s subdifferential as well as some essential properties of them,
and present the notion of pseudomonotone operator that is needed for
our existence result. Some basic results in function spaces are also col-
lected.
In Chapter 3, we give an existence result and an approximation scheme
for general variational inequality of the second kind with a pseudomono-
tone functional such that hemivariational inequalities are included. We
prove convergence results for the sequence of solutions. In Chapter 4, we
give a criteria for the uniqueness of a solution.
Chapter 5 concerns the formulation of hemivariational inequalities in me-
chanics. Next, the relation between a hemivariational inequality and the
corresponding substationary problem involving nonconvex superpoten-
tial is given.
Chapter 6 to Chapter 8 deal with regularizing functions. We start with
smoothing approximation defined in general via convolution. Then, we
consider the class of maximum functions. Using different smoothing ap-
proximations of the plus function, several smoothing functions for the
maximum function are presented. We analyze some approximability
properties of the regularizing functions and their derivatives, and es-
tablish some convergence results.
Chapter 9 to Chapter 10 represent the main part of the thesis. Our
goal is the convergence analysis for a special class of hemivariational in-
equalities and their numerical treatment. We begin with general coercive
hemivariational inequalities defined on the boundary for which we give
an existence result and for some of them we prove uniqueness. Then, we
focus our attention on hemivariational inequalities with maximum (resp.
minimum) superpotential. We first use a regularization method to ap-
proximate the nonsmooth functional by a sequence of differentiable ones.
We discuss the convergence of the regularization method and derive some
a-posteriori error estimates for solutions of the regularized problems in
case of the modulus superpotential function. Then, the finite element
approach using different quadrature rules for the regularized problem is
analysed. We verify all the assumptions guaranteeing the convergence
of the solutions of the discrete regularized problems and give the re-
spective convergence results. In Section 10.6 we consider unique solv-
able continuous and descrete problems. We present a novel variant of
the Céa-Falk approximation lemma applicable to unique solvable hemi-
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variational inequalities. In conclusion, we discuss the convergence order
of the finite element approximations under some regularity assumptions
for the solution of the regularized problem, and using conforming finite
element methods. This approach is extended later in Chapter 12 to co-
ercive hemivariatioanal inequalities defined on a domain and to the case
of nonquadratic growth of energy. Chapter 11 is dedicated to the more
complicated semicoercive case.
Some applications in mechanics are presented in Chapter 13. In Chapter
14, we describe more specific examples and their numerical realization.
More precisely, we illustrate how our idea and previous theoretical results
can be used to find a numerical solution of some benchmark problems,
like bilateral contact with nonmonotone friction, nonmonotone unilat-
eral contact without friction and a delamination problem for a laminated
composite structure. All examples are treated with a regularization of
the nonsmooth functional using a fixed parameter ε. Then, a finite ele-
ment scheme for the regularized problem is applied. Finally, we solve the
involved nonlinear system of equations by minimizing the natural merit
function, following [21], and using the MATLAB function lsqnonlin. Note
that, due to the regularization techniques, we obtain optimization prob-
lems with continuously differentiable functions.
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Chapter 2

Theoretical Background

2.1 Some Elements of Nonsmooth Analysis
In this section, we provide some important definitions and basic results
from the theory of the generalized directional derivative and the general-
ized gradient for locally Lipschitz functions which will be used throughout
this work. For the properties and the calculus of the generalized gradient
we refer to Clarke [17].
Let X be a Banach space with norm ‖·‖ and X∗ its dual, i.e., the space of
all continuous linear functionals on X. We denote the norm convergence
in X and X∗ by "→" and the weak convergence by "⇀", respectively.
Moreover, 〈·, ·〉 stands for the duality pairing between X∗ and X.
A function f : X → IR is said to be locally Lipschitz at a given point
x ∈ X if there exists a neighborhood Ux of x and a positive constant
Lf = Lf (x) such that

|f(x1)− f(x2)| ≤ Lf‖x1 − x2‖ ∀x1, x2 ∈ Ux.

First of all, we recall the definition of the generalized directional deriva-
tive in the sense of Clarke.

Definition 1 (Generalized Directional Derivative) Let f be locally Lip-
schitz at a point x ∈ X. The generalized directional derivative of f at x
in the direction u ∈ X, denoted by f 0(x;u), is defined by

f 0(x;u) = lim sup
y→x,t↓0

f(y + tu)− f(y)
t

. (2.1)
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As f is locally Lipschitz, it is clear that f 0(x;u) ∈ IR. Some properties
of f0 are listed in the following lemma.

Lemma 1 (i) The function f 0(x; ·) : X → IR is finite, positively ho-
mogeneous, subaddative, and thus convex. Moreover, it obviously
satisfies the inequality

|f0(x;u)| ≤ Lf‖u‖ ∀u ∈ X;

(ii) f 0(x;−u) = (−f)0(x;u) ∀u ∈ X;

(iii) f 0(x;u) is upper semicontinuous as a function of (x, u) and, as
function of u alone, is Lipschitz with Lipschitz constant Lf .

Note that (ii) holds, since we can write

f(y − tu)− f(y) = −[f(z + tu)− f(z)] with z = y − tu.

By means of f 0(x;u), we can now introduce the notion of generalized
gradient or Clarke’s subdifferential for locally Lipschitz functions.

Definition 2 (Clarke’s Subdifferential) Let f be locally Lipschitz at a
point x ∈ X. The generalized gradient or the Clarke’s subdifferential of
f at x is the set-valued map ∂f : X ⇒ X∗ defined by

∂f(x) = {ξ ∈ X∗ : 〈ξ, u〉 ≤ f 0(x;u) ∀u ∈ X}. (2.2)

The Clarke’s subdifferential ∂f(x) is a nonempty, convex and weak∗-
compact subset of X∗ and ‖ξ‖X∗ ≤ Lf for every ξ in ∂f(x).
In finite dimensional case, according to Rademacher’s theorem [51], f
is differentiable almost everywhere around x, and the Clarke’s subdif-
ferential ∂f(x) can be computed simpler using the following equivalent
construction

∂f(x) = co {ξ ∈ IRm : ξ = lim
k→∞

∇f(xk), xk → x, xk ∈ Df}. (2.3)

Here, Df is the set of points where f is differentiable.
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Figure 2.1: An example of a convex, globally Lipschitz function f : IR → IR
and its generalized gradient, ∂| · |(0) = [−1, 1]

Further, by Hahn-Banach theorem (see also [17], Pr.2.1.2), one can check
that

f0(x;u) = max
ξ∈∂f(x)

〈ξ, u〉 ∀u ∈ X,

i.e., the generalized directional derivative f 0(x; ·) is the support function
of ∂f(x).
The directional derivative of f at x in the direction u is defined by

f ′(x, u) = lim
t↓0

f(x + tu)− f(x)
t

when this limit exists.
Now, we recall the notion of regularity in the sense of Clarke [17].

Definition 3 (Regularity) A locally Lipschitz function f : X → IR is
said to be regular at a point x ∈ X if the directional derivative f ′(x, u)
exists for every u ∈ X and agrees with f 0(x;u).

The class of regular functions includes for example the class of convex
functions and the class of maximum functions defined by

f(x) = max{g1(x), . . . , gp(x)},

where all gi : IRm → IR, i = 1, . . . , p, are continuously differentiable
functions.
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f(x)

Figure 2.2: An example of a nonconvex, locally Lipschitz function f : IR → IR
and its generalized gradient

Moreover, denoting by I(x) the set of indices at which the maximum of
f is attained, i.e.,

I(x) = {i : gi(x) = f(x)},

the following presentataion for the Clarke’s subdifferential holds

∂f(x) = co {∇gi(x) : i ∈ I(x)}.

Another example of regular functions is a weakly convex function, namely,
a function f : IRm → IR that can be represented as f(x) = g(x)− ρ‖x‖2,
where g is a convex function and ρ is a positive constant.

2.2 Some Inequalities and Preliminary Re-
sults in Function Spaces

In this section, we recall some well-known inequalities and results for
function spaces which we shall frequently use in the subsequent analysis.
For more information in the field we refer, e.g., to [1, 2, 19].

Lemma 2 Let a, b ≥ 0 and p ∈ [1,∞). Then

(a + b)p ≤ 2p−1(ap + bp). (2.4)
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Let Ω be a domain (non-empty open set) in IRN , N ≥ 1, and p ∈ [1,∞]
be a real number.

Hölder’s Inequality
If u ∈ Lp(Ω) and v ∈ Lq(Ω), where p ∈ [1,∞] and 1

p
+ 1

q
= 1, then

uv ∈ L1(Ω) and
‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Minkowski’s Inequality
Let p ∈ [1,∞] and u, v ∈ Lp(Ω). Then

‖u + v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Definition 4 (equiintegrability) Let Ω ⊂ IRN , N ≥ 1, be a bounded
domain and U ⊂ L1(Ω) a family of integrable functions. We say that U
is an equiintegrable family if for any ε > 0 there exists δ > 0 such that
for every measurable set E with Lebesgue measure |E| < δ there holds

∫
E
|u|dx < ε

for all u ∈ U .

According to [3] the sequence {un}n∈IN ⊂ L1(Ω) is equiintegrable iff

lim
a→∞

(
sup
n∈IN

∫
{|un|>a}

|un(x)| dx
)
= 0. (2.5)

Lemma 3 If for some θ > 0

sup
n∈IN

∫
Ω
|un|1+θ dx < ∞, (2.6)

then the sequence {un}n∈IN ⊂ L1(Ω) is equiintegrable.

Proof Indeed, we have
∫
{|un|>a}

|un(x)| dx =
∫
{|un|>a}

|un(x)|aθa−θ dx ≤ a−θ
∫
{|un|>a}

|un(x)|1+θ dx

≤ a−θ
∫

Ω
|un(x)|1+θ dx ≤ a−θ sup

n∈IN

(∫
Ω
|un(x)|1+θ dx

) (2.6)
≤ Ca−θ.
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Hence,
sup
n∈IN

∫
{|un|>a}

|un(x)| dx ≤ Ca−θ → 0 as a → ∞

and according to (2.5) the sequence {un} is equiintegrable. �
Now, we introduce the Lemma of Vitali.

Lemma 4 (Vitali) Let Ω ⊂ IRN , N ≥ 1, be a bounded domain and {un}
a sequence in L1(Ω). Suppose

(i) un → u a.e. ∈ Ω;

(ii) the sequence {un} ⊂ L1(Ω) is equiintegrable.

Then
lim

n→∞

∫
Ω

un(x) dx =
∫

Ω
u dx

In general, the following theorem holds.

Theorem 1 (Vitali) Suppose that the sequence {un} is equiintegrable
in Lp(Ω), 1 ≤ p < ∞, and un → u a.e. in Ω. Then un → u in Lp(Ω).

The following lemma is an application of Vitali’s Lemma.

Lemma 5 Let Ω ⊂ IRN , N ≥ 1, be a bounded domain and {un} a se-
quence in L1(Ω). Suppose

(i) un → u a.e. in Ω;

(ii) the sequence {un} is bounded in Lp(Ω) for some p > 1.

Then
un → u in Lr(Ω) for all 1 ≤ r < p.

Proof Invoking Corollary 2.2.21 in [19], it follows from assumptions (i)
and (ii) that un → u in Lp, and consequently u ∈ Lp.
Define vn := |un − u|r for some r < p. In view of assumption (i), vn → 0
a.e. in Ω.
Then, since

‖vn‖
p
r

L
p
r
=
∫

Ω
|vn|

p
r dx =

∫
Ω
|un − u|p dx < C
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one can conclude that {vn} is bounded in L
p
r (Ω) with p

r
> 1. Hence, by

(2.6) the sequence {vn} ⊂ L1(Ω) is equiintegrable, and thus by Vitali’s
lemma

lim
n→∞

∫
Ω

vn(x) dx =
∫

Ω
lim

n→∞ vn(x) dx = 0.

Further,

‖un − u‖r
Lr =

∫
Ω
|un − u|r dx =

∫
Ω

vn(x) dx → 0

and consequently un → u in Lr(Ω). �

2.3 Pseudomonotone Operators
In this section, we present some of the basic results on pseudomonotone
operators from a real, reflexive Banach space X into its dual space X∗.
This notion was invented by H. Brézis [9] in view of applications to
nonlinear partial differential equations, see Minty [39, 40] and Browder
[10]. It combines monotonicity of the leading part in divergence form
with compactness for lower order terms.

Definition 5 (see [53]) The operator T : X → X∗ is (topologically)
pseudomonotone iff, for each u ∈ X and each sequence {un} in X,

un ⇀ u and lim sup
n→∞

〈Tun, un − u〉 ≤ 0

imply

〈Tu, u − w〉 ≤ lim inf
n→∞ 〈Tun, un − w〉 for all w ∈ X.

More generally, pseudomonotone bifunctions can be defined, see [27, 29].

Definition 6 Let K be a weakly closed subset of X. Then a bifunction
ϕ : K × K → IR is called pseudomonotone on K, if for any sequence
{un} in K,

un ⇀ u and lim inf
n→∞ ϕ(un, u) ≥ 0

imply
ϕ(u, v) ≥ lim sup

n→∞
ϕ(un, v) ∀v ∈ K.
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One can prove, see [53], that monotone and hemicontinuous or strongly
continuous operators (bifunctions) give rise to pseudomonotone oper-
ators (bifunctions). So, one can say that the theory of topologically
pseudomonotone operators unifies both monotonicity and compactness
arguments.
Furthermore, in view of applications, it is very important that the sum of
two pseudomonotone operators (bifunctions) is again a pseudomonotone
operator (bifunction). For further properties of the pseudomonotone op-
erators we refer to [53].
Recall also that T : X → X∗ is

(a) strongly continuous iff un ⇀ u in X implies Tun → Tu in X∗;

(b) hemicontinuous iff T is continuous on line segments in K, i.e.,
for every pair of points x, y ∈ X, the following function

t → 〈T (tx + (1− t)y), x − y〉, t ∈ [0, 1]

is continuous.

A simple example for a pseudomonotone function is ϕ(x, y) := f(y) −
f(x), where f : K → IR is weakly lower semicontinuous function. A
compact, not necessarily linear operator, T : X → X∗ gives also rise to a
pseudomonotone function ψ(x, y) := 〈T (x), y − x〉. In general, ψ(x, y) is
pseudomonotone, if and only if, T is a pseudomonotone operator. More
generally,

ψ(x, y) := max{〈u, y − x〉 : u ∈ T (x)},

where T : X ⇒ X∗ is a multivalued operator with nonempty convex
closed bounded values.


