
Chapter 1

Preliminaries

In this chapter we compile the basic concepts of complexity theory, propo-
sitional logic, and probability theory which will be continuously used in
this work. Complexity theory is needed to evaluate the efficiency of the
introduced methods that allow for an analysis of interaction networks, in
particular, it enables us to compare it with other concepts. Propositional
logic is fundamental to all models for interaction networks that are de-
veloped herein. Finally, the theory of probability is needed in Chapter 4,
where we analyze a randomized algorithm. Throughout this work we
use the theory of polyhedra, integer programming, and combinatorial op-
timization hand in hand with propositional logic. We assume that these
concepts are known and refer to the books [BW05], [Sch86], and [Sch03a]
for details.

1.1 Complexity Theory

Complexity theory is a tool to characterize the degree of difficulty of a
problem. In this context a problem is a general question to be answered
with several parameters. An instance of a problem is obtained by speci-
fying the parameters. An algorithm is a procedure to solve an instance of
the problem. This section will give a brief introduction to this topic. The
definitions are according to [GJ79].

1

1 Preliminaries

Running time The running time of an algorithm measures the space
and time used to solve a class of problems with the help of a certain
algorithm. Intuitively, the performance of the algorithm depends on the
size of its input. Thus, every instance of a problem class is assigned an
encoding length or input sizewhich specifies the size of the input data given
to the algorithm. The time and space complexity of the algorithm is then
determined in relation to this input size.

In the usual encoding scheme the encoding length of a problem is
measured by the number of bits necessary to save the data. For an integer
n we exploit the standard binary encoding leading to an input size of
〈n〉 = �log2(|n|) + 1� + 1, where the latter 1 refers to the encoding size of
the sign of n. Hence, the encoding length of a rational number r given as
p/q, with p and q integers, is 〈r〉 = 〈p〉 + 〈q〉. Analogously, the input size of
a matrix is the sum of the sizes of its entries.

To measure the complexity of an algorithm the growth of the time
(space) requirement is analyzed with respect to the growth in input size.
For this the unit operations – addition, subtraction, multiplication, divi-
sion and comparison – are counted and their unit times are accumulated.
This leads to the time complexity function f : N → N of an algorithm de-
fined as the largest amount of time f (n) needed for the algorithm to solve
a problem instance of each possible input size n ∈ N. Similarly, the space
complexity function g : N → N describes the maximum space g(n) needed
to solve an instance of an encoding length of at most n ∈ N. The space
complexity of an algorithm can be incorporated into the time complexity
by counting the writing on and reading of the memory as unit opera-
tions, which we will do from now on. In this setting the space complexity
is dominated by the time complexity so that we can focus on the time
complexity function.

Since one is usually interested in the order of magnitude of the running
time of an algorithm rather than in the exact time complexity function, we
use the asymptotic Landau notation to describe the growth of a function.
For two functions f , h : N → R we say that f (n) ∈ O(h(n)) if there exist
positive constants c ∈ R and n0 ∈ N such that

∣∣∣ f (n)
∣∣∣ ≤ c

∣∣∣h(n)
∣∣∣ for all n ≥ n0.

To indicate that the constant c = c(ε) depends on a constant ε ∈ R, we

2

denote this by f (n) ∈ Oε(h(n)). Further, f (n) ∈ Θ(h(n)) if

1.1 Complexity Theory

f (n) ∈ O(h(n)) and h(n) ∈ O(f (n)).

Finally, we have f (n) ∈ o(h(n)) if there exists n0 ∈ N such that for all
positive c ∈ R,

∣∣∣ f (n)
∣∣∣ ≤ c

∣∣∣h(n)
∣∣∣ for all n ≥ n0.

The o(h(n)) indicates actual difference in the order of magnitude of f and
h, like e.g., f (n) = logn and h(n) = n while Θ(h(n)) refers to the same size
of f (n) and h(n), as e.g., f (n) = 5n2 + n and h(n) = n2.

The Landau symbols allow for the characterization of “easier” and
“harder” problems. Each algorithm with a time complexity function
f (n) ∈ O(p(n)) for a polynomial p is called a polynomial time algorithm.
An algorithm that is polynomial time in the sum of the sizes of its input
and output is called output polynomial. If p is a linear function, we speak
of a linear time algorithm while for p being an exponential function we
have an exponential time algorithm. A running time that lies between
polynomial and exponential time is the quasi-polynomial time, that is, if
the time complexity function f (n) of an algorithm is in O(2polylog(n)).

P versus NP In this paragraph the problems are restricted to so called
decision problems. The only possible answers to these problems are ‘yes’
or ‘no’. One is interested in categorizing decision problems into different
classes.

The class P contains all decision problems for which there exists an
algorithm with time complexity function f , f ∈ O(p) for a polynomial p,
that solves it.

The classNP includes all decision problems whose ‘yes’ answer can be
verified in polynomial time. NP is short for the class of nondeterministic
polynomial decision problems. It is certainly clear that P ⊆ NP, but it is
an open question whether P = NP.
Example 1.1. Let c ∈ Zn,A ∈ Zm×n, and b ∈ Zm. Consider the binary
integer optimization problem

max cᵀx

s. t. x ∈ F = {x ∈ {0, 1}n | Ax ≤ b} .
The corresponding decision problem is the question whether there is an

3

x ∈ F so that cᵀx ≥ α for a given constant α ∈ Z. It is in the class NP

1 Preliminaries

as a solution x0 ∈ {0, 1}n is of polynomial size and it can be verified by
testing whether cᵀx0 ≥ α, using n multiplications, n − 1 additions, and
1 comparison. To check if x0 ∈ F takes 2nm operations. Altogether,
(m + 1)2n operations are necessary to confirm a ‘yes’ answer, thus the
verification needs O(m · n) steps.

Another complexity class closely related to NP is the class co-NP. It
contains all decision problems whose ‘no’ answer can be verified in poly-
nomial time, or alternatively it contains all problems whose complement
is in NP. An example is the question whether a given number k ∈ N is
prime. If it is not prime, this can be verified in polynomial time with an
integer d ∈ N that divides k. It is not known whether NP = co-NP.

A key question is the comparability of two decision problems – when
are two decision problems equally hard? Suppose two decision prob-
lems Π1 and Π2 are given. A polynomial transformation is an algorithm
transferring an instance σ of Π1 in polynomial time to an instance σ′
of Π2 such that the answer to σ is ‘yes’ if and only if the answer to σ′
is ‘yes’. A decision problem Π is called NP-complete if two conditions
hold: Π ∈ NP, and an NP-complete problem can be polynomially trans-
formed toΠ. In particular, this implies that if oneNP-complete problem is
polynomially solvable, all NP-complete problems are in P. A polynomial
algorithm for an NP-complete problem further implies P = NP. Nev-
ertheless, there can exist polynomial solution procedures for particular
subclasses of problems in NP or co-NP. These procedures can usually
be obtained by exploiting special combinatorial features or structures of
the subclasses. This closes our brief overview of complexity theory. For
a detailed introduction see [GJ79].

1.2 Propositional Logic

For this short summary we follow the notation of Kleine Büning and
Lettman [KBL99].

Definition 1.2 (atom). An atom is a basic proposition which can only
possess two values, True or False.

Atoms can be combined by logical ‘and’ (denoted by ∧), ‘or’ (denoted
by ∨), and ‘not’ (denoted by ¬) operations to logical formulas. These
operations are called conjunction, disjunction, and negation, respectively.

4

1.2 Propositional Logic

Remark 1.3. If it is not to be emphasized whether an atom is negated or
not, an atom or its negation is called literal. Sometimes an atom is referred
to as positive literal and a negated atom as negative literal.

Definition 1.4 (propositional formula). The set of propositional formulas is
inductively defined by four rules:

(i) Every atom is a formula.

(ii) If α is a formula, then (¬α) is also a formula.

(iii) If α and β are formulas, then α ∨ β and α ∧ β are also formulas.

(iv) Only expressions according to (i)-(iii) are formulas.

Two special logical operations we continuously use are the implication
‘→’ and the equivalence ‘↔’. Both are abbreviations for combinations of
standard operations. Let α and β be two propositional formulas, then α→
β denotes ¬α∨β and α↔ βmeans (α→ β)∧ (β→ α) ≈ (¬α∨β)∧ (¬β∨α),
where ‘≈’ denotes logical equivalence.

There are different standard forms of propositional formulas with dis-
tinct properties. The most commonly used is theConjunctive Normal Form.

Definition 1.5 (clause, Conjunctive Normal Form, Horn clause, Horn
formula).

1. A clause α is a disjunction of literals, i.e., α = A1 ∨ . . . ∨ An with
literals Ai. It is called k-clause if it contains at most k literals. A
clause is called empty if it contains no literal.

2. A formula α is in Conjunctive Normal Form (CNF) if and only if α is
a conjunction of clauses.

3. A formula α is in k-CNF if and only if α is a conjunction of k-clauses.

4. A clause is called a Horn clause if it contains at most one positive
literal.

5. The conjunction of Horn clauses is named a Horn formula.

Note that each propositional formula can be transformed into a logically
equivalent formula in k-CNF, k ≥ 3, in polynomial time.

An important question in propositional logic is whether there exists a
truth assignment for literals, i.e., an assignment of 0 or 1 to each atom,
such that a propositional formula is True.

5

1 Preliminaries

Definition 1.6 (truth assignment, satisfiable).

1. A truth assignment Γ of a propositional formula α is defined as

Γ :
{
α | α is a propositional formula

} → {0, 1} .
For propositional formulasα and β it is calculated according to three
rules:

(i) Γ(¬α) := 1 if and only if Γ(α) = 0;

(ii) Γ(α ∨ β) := 1 if and only if Γ(α) = 1 or Γ(β) = 1;

(iii) Γ(α ∧ β) := 1 if and only if Γ(α) = 1 and Γ(β) = 1.

2. A propositional formula α is satisfiable if and only if there exists a
truth assignment Γ so that Γ(α) = 1.

Note that an empty clause is, by definition, not satisfiable. The set of
satisfiable formulas in CNF is denoted by

SAT := {α ∈ CNF | α is satisfiable}
k-SAT := {α ∈ k-CNF | α is satisfiable}.

Since every propositional formula can be transformed into a logically
equivalent formula in 3-CNF in polynomial time, testing an arbitrary
propositional formula for satisfiability can be reduced to testing its equiv-
alent 3-CNF. But this still remains hard:

Theorem 1.7 ([Coo71]). SAT and 3-SAT areNP-complete.
In this context Horn as well as 2-CNF formulas play an important role

because testing them for satisfiability can be accomplished in polynomial
time. Horn formulas can be tested for satisfiability by means of value
propagation using the logical programming language Prolog [Rou75]. For
2-CNF formulas there exists a graphical infeasibility certificate of linear
size which was introduced by Aspvall, Plass, and Tarjan [APT79]. They
reduce unsatisfiability of a 2-CNF instance α2 to a property of a certain
auxiliary digraph G(α2) that is constructed according to three rules:

(i) Introduce the two nodes A and ¬A for every atom A in α2.

(ii) For every 2-clause A ∨ B the two arcs (¬A,B) and (¬B,A) are intro-
duced.

6

1.2 Propositional Logic

(iii) For every 1-clause Amake the arc (¬A,A).

The arcs can be seen as logical consequences. Whenever the tail of an
arc evaluates to True, the head also has to evaluate to True in order to
satisfy the associated 2-clause. The following certificate is obtained from
this construction.

Theorem 1.8 ([APT79]). A 2-CNF formula α2 is satisfiable if and only if no
pair of vertices A and ¬A occurs in one strongly connected component of G(α2).

This means that α2 is not satisfiable if there exists a path inG(α2) leading
from A to ¬A together with a path from ¬A to A. The one path states that
Amust be False while the other requires the opposite, a contradiction.

In case α2 is satisfiable, the satisfying assignment is obtained by travers-
ing the strongly connected components of G(α2) in reverse topological
order, computed by the linear time algorithm of Tarjan [Tar72], while
obeying that every pair of vertices A and ¬A are assigned complemen-
tary values and for no arc (A,B) the head B is assigned False and the tail
A is True.

A purely syntactical method to test the satisfiability of a CNF formula
is resolution which is a recursive elimination of the variables. The only
rule of the resolution calculus is that for two clauses (α∨A) and (β∨¬A)
the new clause (α∨ β) can be concluded. An empty clause is produced in
the resolution procedure precisely if the original CNF is unsatisfiable. Just
as the Fourier-Motzkin Elimination [Mot36] the resolution procedure can
yield a quadratic increase in the size of the CNF formula in every step.

One last notion of a propositional formula is needed (see e.g., [KSS00]).

Definition 1.9 (model, ≤, maximal (minimal) model, monotone).

1. A model m of a propositional formula α is a satisfying truth assign-
ment of α. The set of all models of α is denoted by models(α).

2. Let Γ1 and Γ2 be two truth assignments of α. If for all atoms A of α
for which Γ1(A) = 1 it also holds that Γ2(A) = 1, then Γ1 ≤ Γ2.

3. A model m∗ is called maximal (minimal) if no other model m exists
such thatm∗ < m (m∗ > m). The set of all maximal (minimal) models
of α is denoted by maximal(α) (minimal(α)).

4. A formula α is called up-monotone if all truth assignments Γ ≥ m, for
a model m, are also models of α, and it is named down-monotone if

7

1 Preliminaries

all Γ ≤ m, for a model m, are also models of α. If α is either up- or
down-monotone, it is monotone.

An example of an up-monotone formula is a CNF formula with only
positive literals. Equivalently, a CNF with only negative literals is down-
monotone. Clearly, the question of satisfiability for monotone formulas is
therefore easy: If 1 or 0, respectively, satisfies the formula, it is satisfiable.
In this context it is rather of interest to identify the irredundant dual of
a monotone CNF formula. This can be computed in incremental quasi-
polynomial time using the Joint Generation algorithm [GK99], that is, in
every step the algorithm generates new output in quasi-polynomial time.
Crucial to this algorithm is the result of Fredman and Khachiyan [FK96]
which ensures that deciding the duality of two monotone propositional
formulas can be done in no(logn), where n is the size of the two monotone
formulas. For an overview of the Joint Generation method see [EMG08].
In particular, the Joint Generation algorithm is a smart, general purpose
enumeration method for monotone generation problems. It simply re-
quires an oracle that monotonously decides for feasibility. This makes it
a powerful tool for theory and application. In the subsequent chapters
we will present some of the numerous applications.

1.3 Probability Theory

For the introduction to basic probability theory we follow, if not indicated
otherwise, the book [MU05]. All proofs are left out and can be found in
the book. Initially, we need to define a probability space which underlies
every probabilistic analysis.

Definition 1.10 (probability space, probability function). A probability
space is a 3-tuple (Ω,E,P) containing the following three components:

1. the sample spaceΩ consisting of all possible outcomes of the random
experiment,

2. a family of setsE, where eachE ∈ E is a subset ofΩ, which represents
all allowable events, and

3. a probability function P : E → [0, 1] satisfying the subsequent condi-
tions:

(i) P(∅) = 0, P(Ω) = 1, and

8

1.3 Probability Theory

(ii) for any finite or countably infinite sequence of pairwise disjoint
sets E1,E2, . . . it holds true that

P
(⋃

i≥1 Ei
)
=

∑
i≥1 P(Ei). (1.1)

For discrete probability spaces the sample spaceΩ is finite or countably
infinite, and the family E of allowable events consists of subsets of Ω. To
illustrate the definition consider the example of throwing a die. Then
Ω = {1, 2, . . . , 6}, E consists of each subset with one element, and P(i) = 1

6
for all 1 ≤ i ≤ 6.

From now on we always assume a probability space (Ω,E,P), and
denote the complement of an event E by E = Ω \ E. For every two events
E1,E2 ∈ E the following useful property is easily concluded

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) ≤ P(E1) + P(E2),

where we use the usual notation of set theory. A useful version for n
events E1, . . . ,En is the inequality

P
(⋃n

i=1 Ei
) ≤ ∑n

i=1 P(Ei).

Note that the difference to Equation (1.1) is that in this case the events
must not be pairwise disjoint. For the intersection of two events a different
property of the Ei ensures such kind of equality. The events E1, . . . ,En are
mutually independent if for all subsets L ⊆ {1, . . . ,n}

P(
⋂
i∈L Ei) =

∏
i∈L P(Ei).

If we throw another die together with our first one, the two events that
each die shows a ‘1’ are independent. Hence, the event that both show a
‘1’ has a probability of 1

36 .
Often one aims at analyzing the probability of an event E under the

condition that a certain other event F takes place. For example, we might
want to compute the probability that it snows provided that it is summer.
This probability is certainly smaller than if we assume winter time.

Definition 1.11 (conditional probability). The conditional probability of
event E given that event F occurs is

P(E | F) :=
P(E ∩ F)

P(F)
.

9

1 Preliminaries

It is only well-defined if P(F) > 0.

The conditional probability can be seen as looking at the event E ∩ F
among those sets containing F. An immediate, easy consequence is that
P(E | F) = P(E) if and only if E and F are independent. Applying the
conditional probability with a partition E1, . . . ,En of Ω yields a useful
instrument to determine the probability of an event.

Theorem 1.12 (Law of Total Probability). Let F be an event and E1, . . . ,En a
partition of Ω, then

P(F) =
∑n
i=1 P(F ∩ Ei) = ∑n

i=1 P(F | Ei) P(Ei).

Random variables When studying random events one is often inter-
ested in an associated value rather than in the event itself. One can be
interested in the sum of the results of two dice, and with which probabil-
ity the sum equals a given value. In order to do so random variables are
introduced. As we will mostly need discrete random variables, we focus
on these. The given definitions remain valid for continuous random vari-
ables if we assume a continuous probability function and use appropriate
integrals instead of sums.

Definition 1.13 ((discrete) random variable). A random variable X on a
sample space Ω is a real-valued function X : Ω → R. A discrete random
variable is a random variable that attains a finite or countably infinite
number of values.

Random variables are always denoted by capital letters while real num-
bers are presented as lowercase letters. For a discrete random variable X
and a real number a the event ‘X = a’ includes all elements ofΩ for which
the random variable is equal to a. The probability of this event therefore
is

P(X = a) =
∑

s∈Ω:X(s)=a

P(s).

With this, the probability P(X = a) defines a function f : R → [0, 1] as
f (a) = P(X = a), called the probability mass function of X. Let us consider
the two dice we throw, and assume we are interested in the probability
that the sum of the two dice is 4. We define X as the sum of results of the
two dice thrown once. For each (i, j), 1 ≤ i, j ≤ 6 we obtain a probability

10

1.3 Probability Theory

of 1
36 . There are three cases in which the sum is 4, namely (1, 3), (2, 2), and

(3, 1), thus

P(X = 4) = 3
36 =

1
12 .

The probability mass function uniquely determines how the probability
of a random variable is distributed. In particular, it defines its distribution
function.

Definition 1.14 ((probability) distribution function). The (probability) dis-
tribution function, or simply distribution, of a random variable X is the
function F : R → [0, 1] given by

F(x) = P(X ≤ x).
The distribution function is monotonically increasing, limx→−∞ F(x) = 0
and limx→∞ F(x) = 1, and it is right-continuous, i.e., F(x + h) → F(x), as
h↘ 0.

An important distribution, which is often considered in this thesis, is
the binomial distribution with parameters n and p. It is used to reflect the
number of successes in n independent trials with a probability of success
of p. A random variable X is binomially distributed with parameters n
and p, abbreviated by Bin(n, p), if its probability mass function is given by

P(X = k) =
(n
k

)
pk(1 − p)n−k.

Imagine we are throwing a fair coin n times, then the total number of
heads is distributed as Bin(n, p) with p = 1/2.

Using the concept of probability mass functions, the definition of mu-
tually independence can be adapted to random variables. The random
variables X1, . . . ,Xn are called mutually independent if

P (
⋂
i∈L(Xi = xi)) =

∏
i∈L P(Xi = xi)

for each subset L ⊆ {1, . . . ,n}, and all values x1, . . . , xn ∈ R. If several
mutually independent random variables Xi, i = 1, . . . ,n, have the same
distribution function, one says that the Xi are independent, identically dis-
tributed (iid) random variables.

A basic characteristic of a random variable X is its expectation, also re-
ferred to as first moment of X. It reflects the variable’s average value
weighted by the probability. For a discrete random variable X its expec-

11

tation is denoted by EX and defined as

1 Preliminaries

EX :=
∑
i iP(X = i).

The summation is over all values in the range of X and it is only finite
if

∑
i |i|P(X = i) converges, otherwise it is unbounded. Note that the kth

moment of a random variable X is given by E(Xk) =
∑
i ik P(X = i). In our

example with the two dice we obtain the expected value of X as

EX = 2 · 1
36 + 3 · 2

36 + 4 · 3
36 + . . . + 12 · 1

36 = 7.

For a binomially distributed variableXwith parameters n and p, EX = np.
Since the expectation is defined as a sum, it is obvious that it behaves
linearly for discrete (not necessarily independent) random variables Xi,
i = 1, . . . ,n, and a constant c:

E
(∑n

i=1 Xi
)
=

∑n
i=1 EXi and E(cXi) = cEXi.

In the analysis of random variables one is often interested in bounding
the so called tail probability of a random variableX, that is, the probability
that X exceeds a real number α > 0. The expectation is a useful measure
for this and yields with r ∈ Z+ the following inequality, often referred to
asMarkov inequality

P(|X| ≥ α) ≤ E (|X|r)
αr

. (1.2)

Advanced concepts Just as the conditional probability, one can also
define the conditional expectation of a random variable Y as

E(Y | Z = z) :=
∑
y yP(Y = y | Z = z),

where the sum is over all y in the range of Y, and Z is a random variable.
As for the conditional probability, E(Y | Z = z) = E(Y) if Y and Z are
independent. If no value for Z is specified, E(Y | Z) is itself a random
variable f (Z) taking values E(Y | Z = z) for Z = z.

Proposition 1.15. The conditional expectation has the following properties for
random variables X,Y, and Z:

(i) EY =
∑
z E(Y | Z = z) P(Z = z);

(ii) EY = E(E(Y | Z));

12

1.3 Probability Theory

(iii) E(aX + bY | Z) = aE(X | Z) + bE(Y | Z) for a, b ∈ R;

(iv) EY = E(Y | Z) · P(Z) + E(Y | Z) · P(Z) with complement Z of Z; and

(v) E(Y | Z) = E (E(Y | X,Z) | Z) = E (E(Y | Z) | X,Z).

When dealing with sums of independent random variables it is useful
to exploit their representation via probability generating functions, for which
we follow [GS92]. The probability generating function reflects a sequence
of probabilities just as the general generating function reflects a sequence
of real numbers. Let X be a discrete random variable taking values
in the nonnegative integers {0, 1, 2, . . .}. Its distribution is defined by
the sequence of probabilities f (i) = P(X = i) for i = 0, 1, Then the
probability generating function G of the random variable X is defined as

GX(s) = E(sX) =
∑∞
i=0 si P(X = i).

GX converges at least when |s| ≤ 1, and in its radius of convergence it
is unique with respect to f (i). For a generating function G(s) =

∑∞
i=1 aisi,

Abel’s Theorem states that, if ai ≥ 0 for all i and G(s) is finite for |s| < 1,
then lims↑1 G(s) =

∑∞
i=0 ai, independent of whether the sum is finite or not.

Hence, lims→1 GX(s) =
∑
i≥0 f (i) since the conditions of Abel’s Theorem are

always fulfilled by a probability generating function. Further, GX(0) =
P(X = 0) andGX(1) = 1. In general, probability generating functions have
the following properties.

Theorem 1.16. Let all random variables named herein be nonnegative and
discrete, and letG∗ be the probability generating function of the randomvariable ∗.
Then

(i) for a random variable X, its expected value is

E(X) =
d
ds
GX(1);

(ii) if the two random variables X and Y are independent, then

GX+Y(s) = GX(s)GY(s);

(iii) let Xi, i = 1, 2, . . ., be a sequence of iid random variables with common
probability generating function GX, and let N ≥ 0 be a random variable

13

1 Preliminaries

that is independent of the Xi. Then the probability generating function GZ
of the random variable Z = X1 + . . . + XN is given by

GZ(s) = GN (GX(s)) .

The theorem shows the usefulness of generating functions when it
comes to compositions of random variables. See [GS92] for more details.

Random processes We now turn to collections of random variables.

Definition 1.17 (random process). A random process is a collection X =
{X(t) | t ∈ T} of random variables X(t) for all t ∈ T, where T ⊆ R is an
arbitrary set.

A random process models the value of a random variable over time.
The random variable X(t) is the state of the process at time t. If X(t), t ∈ T,
assumes values from a countably finite set, X is a discrete space process.
If T is countably finite, X is a discrete time process. Herein we focus on
discrete time and space processes that areMarkovian, i.e., which satisfy

P (X(t) = at | X(t − 1) = at−1, . . . ,X(0) = a0) = P (X(t) = at | X(t − 1) = at−1) .

The state at time tdepends only on the previous state, but it is independent
of the history how the (t−1)th state was reached. A special class of random
processes are martingales.

Definition 1.18 (martingale, stopping time). A sequence of random vari-
ables Z0,Z1, . . . is a martingale with respect to the sequence X0,X1, . . . if,
for all n ≥ 0, the following conditions hold:

(i) Zn is a function of X0,X1, . . . ,Xn;

(ii) E (|Zn|) < ∞; and

(iii) E (Zn+1 | X0, . . . ,Xn) = Zn.

A nonnegative, integer valued random variable T is a stopping time for
the sequence {Zn,n ≥ 0} if the event ‘T = t′ depends only on the random
variables Z0, . . . ,Zt.

A martingale can have a finite or a countably infinite number of ele-
ments. A stopping time is a time at which the random process can be
stopped but it must only depend on the previous time steps. Imagine

14

1.3 Probability Theory

there is a gambler playing repeatedly one game. A stopping time for him
is, for example, the first time that he wins five times in a row while the
time when he wins five times in a row for the last time is no stopping
time as it depends on the future. The main theorem for martingales is the
following.

Theorem 1.19 (Martingale Stopping Theorem). If Z0,Z1, . . . is a martingale
with respect to X0,X1, . . . and if T is a stopping time for X0,X1, . . ., then

E(ZT) = E(Z0),

whenever one of the subsequent conditions holds:

• the Zi are bounded, i.e., there exists a constant c ≥ 0with |Zi| < c, for all i;
• T is bounded; or
• E(T) < ∞, and there is a constant c ≥ 0 such that

E(Zi+1 − Zi | X0, . . . ,Xi) < c ∀i.
With this we close our recapitulation of probability theory and refer to

the named introductory literature for details.

15

