
Chapter 1

Introduction

Robust optimization deals with optimization problems where the under-
lying data making up the objective function and the constraints are, at
least partially, subject to uncertainty. Ways how to deal with uncertainty
are manifold and depend largely on assumptions about the nature of the
uncertainty and which part of the problem it affects. The uncertainty may
be known, for example, as a probability distribution or simply as a set
of possible values, which may then be finite, discrete or continuous. It
may affect different parts of the problem: the objective function or the
constraints, partially or fully.
The nature of the uncertainty and where it affects the problem data is

determined by the source of the uncertainty. Sources of uncertainty in
mathematical optimization problems are just as diversified as the real-
world problems they model. If data is measured, it may be subject to
measurement error. Data may be influenced by previously taken and
possibly faulty decisions. Data may also depend on decisions to be taken
by another entity which may be influenced to assist your needs, or by
an adversary who wants to see your plans foiled. Information may be
imprecise, forged, scarce or simply not yet available at the point when a
decision has to be taken with the help of a mathematical programming
model.
Data uncertainty can often be regarded as either a restriction or a chance,

depending on whether one assumes an optimistic or a pessimistic point
of view. The optimist hopes that he can eventually choose a specific
instantiation of the data that will serve him best. The pessimist, however,
assumes that all possible instantiations of data may occur without him
having any means of influence and that he therefore has to prepare for
the worst. These two ways of regarding data uncertainty lead to two
classes of mathematical programming models, which are different but
nonetheless related, as we will see later. Speaking of robust optimization,
one usually refers to a pessimistic interpretation of the uncertainty. The
data is regarded as being perturbed by some adversary entity, and one

1

Chapter 1 Introduction

tries to be protected against these perturbations.
Throughout this thesis, we choose a deterministic viewpoint rather

than a probabilistic one; uncertainty is in the form of sets of possible data
instantiations. In the course of this dissertation, these sets get increasingly
more general: We start with sets with simple structure, later we look at
general polyhedra, then at ellipsoidal sets, and we finally discuss discrete
uncertainties defined by the integer points of a polyhedron. We assume
that the uncertainty is provided to us, and we do not consider the process
of retrieving appropriate uncertainty sets for specific applications. As to
optimistic and pessimistic views on uncertainty, both are covered but with
a stronger focus on the pessimistic case, i.e., we mainly consider robust
optimization.
Chapter 2 introduces notation and preliminaries helpful to read this

thesis, followed in Chapter 3 by a short review of what has been done in
robust optimization andwhat provided a basis for the topics covered by this
thesis. What can be found in literature about robust optimization focusses
mainly on tractability. Either a simple problem, like a linear program,
is taken and perturbed by quite general uncertainties, like polyhedra or
ellipsoids; or, the underlying problem is harder, like a 0-1 program, but
the uncertainties have a very simple structure that allows the reduction
of the problem to a series of non-robust problems of the same type as the
underlying problem. What has not been done yet is to look at problems
that are generally considered intractable by themselves, like MIPs, but
that are additionally subject to uncertainty of a general type. Subsequent
chapters are dedicated to research this direction.
In Chapter 4, we investigate a generalization of a model from the

literature for uncertainty in the costs of a specific, simply structured type
that allows the control of the amount of robustness in a problem. In the
literature, this is done by a single constraint restricting the number of
simultaneously uncertain coefficients. In the generalization presented here,
more than one constraint and general knapsack constraints with positive
coefficients are allowed. The generalization thus offers much more flexible
ways to impose control on the uncertainty.
We show that a robust 0-1 program with controlled uncertainty in the

cost is solved by a finite number of non-robust 0-1 programs with the same
set of feasible solutions. This number is bounded by a polynomial in the
dimension of the problem as long as the number of knapsack constraints
in the control is bounded by a polynomial as well. We further outline
a subgradient method for the robust minimum-cost flow problem with
controlled uncertainty in the cost that converges to the optimum while
iteratively solving non-robust minimum-cost flow problems.

2

In the secondmajor part of the thesis, Chapter 5, linear andmixed-integer
programs under uncertainty are considered. Both the pessimistic view
represented by robust linear and robust mixed-integer programs and the
optimistic view represented by generalized linear and generalized mixed-
integer programs are looked at. Reformulations of these problems with
polyhedral uncertainty as non-robust linear or mixed-integer programs are
reviewed. With the help of these, duality between robust and generalized
linear programs, and some Farkas-like lemmas are derived. A solution
method from the literature for generalized linear programs is presented. It
is then apparent that robust and generalized linear programs are efficiently
solvable.
We then primarily aim at deriving cutting planes for mixed-integer

programs under uncertainty. We prove that lattice-free cuts for robust
mixed-integer programs are generated by solving certain generalized
linear programs. Also, lattice-free cuts for generalized mixed-integer
programs are generated by solving robust linear programs. Finally, it is
demonstrated how the results of this part are generalized to uncertainties
described by convex conic sets.
The last part, Chapter 6, is dedicated to implementation and computation.

The lattice free cuts for robust mixed-integer programs are compared to
lattice-free cuts for the mixed-integer reformulation. The computations on
a large set of test instances illustrate that, in general, it is advantageous
to generate cuts directly for the robust problem rather than using the
reformulation: The amount of gap closed is similar while cut generation is
performed faster.

3

Chapter 2

Preliminaries

2.1 Notation

Tabular lists of notations and abbreviations used are found in the back of
this thesis.
We denote withZ,Q andR the sets of integer, rational and real numbers,

respectively. Z+, Q+ and R+ denote the non-negative integer, rational
and real numbers, respectively. B denotes the set {0, 1}. For a number
n ∈ Z+ \{0}, [n] denotes the set {1, . . . ,n}. Except for these special sets, other
sets are usually denoted by calligraphic upper case letters, for example S.
For a set S and m ∈ Z+ \ {0}, the set of (column) vectors of length m

with entries from S is denoted by Sm. For an additional n ∈ Z+ \ {0}, the
set of row vectors of length n is denoted by S1,n and the set of matrices
with m rows and n columns by Sm,n. Column vectors and row vectors are
regarded as matrices having only one column or only one row, respectively.
Vectors are usually denoted by lowercase bold letters, like x, matrices

by upper case bold letters, like A. The rows of a matrix A are indexed
by subscripts, like ai, columns of A are indexed by superscripts, like a j.
Then A = (a1; . . . ;am) = (a1, . . . ,an) with (. . . ; . . .) denoting vertical and
(. . . , . . .) horizontal concatenation. The entry at the ith row and jth column
is then denoted by aji . Likewise, if x is a column vector, xi denotes the
entry in the ith row, and, if it is a row vector, xj denotes the entry in the
jth column. For a set of row indices I and a set of column indices J , we
denote with AJ

I the submatrix of A built from the entries aji with i ∈ I and
j ∈ J ; we denote row-wise only and column-wise only submatrices by AI
and AJ , respectively, and subvectors by xI and xJ . With A� we denote
the transposed matrix having entries aij where A has entries aji .

0m,n (0 if m and n are clear from context) denotes the all-zero matrix,
1m,n (1 if m and n are clear from context) denotes the all-one matrix. For a
vector d, diag(d) denotes the matrix with entries di on the diagonal as the
only non-zero entries. The matrix En (E if n is clear from context) denotes

5

Chapter 2 Preliminaries

the identity matrix, En = diag(1n,1). The jth column of E is the jth unit
vector and is denoted by e j, the ith row is denoted by ei.
For a vector x, the Euclidean norm is denoted by ‖x‖ and the l1-norm

is denoted by ‖x‖1. The convex hull of a set S is denoted by conv(S), the
closure of the convex hull by conv(S). The convex conic hull is denoted by
ccone(S), its closure by ccone(S). If a set S is defined in terms of variables
x and y, then projx(S) denotes the projection of S onto the subspace
corresponding to the variable x, projx(S) � {x : ∃y : (x, y) ∈ S}.

2.2 Algorithms and Complexity

In this thesis, we will often talk about problems, solution algorithms and
their complexity. We will introduce the basic concepts of computational
complexity to formalize these notions. Because a complete treatment of
this subject would go beyond the scope of this introduction, we refer to
the usual books (Garey and Johnson, 1990; Arora and Barak, 2009), in
particular to the one by Grötschel, Lovász, and Schrijver (1988), upon
which most of the following is based.

2.2.1 Problems and Algorithms

A problem is a question that is formulated in dependence on a series of
parameters. An instance of a problem is an assignment of values to all of
the parameters. A solution of a given instance is the answer to the problem
question using the parameters assigned by the instance. For a problem to
be well defined we expect to have an explicit description of the properties
that characterize the solutions for a given instance.
To formalize solution algorithms for problems, we need to agree on

how problems are represented. Let B∗ the set of finite strings of symbols
from B = {0, 1}. An encoding scheme for a problem is a pair of one-to-one
mappings thatmap instances/solutions to finite strings inB∗. The (encoding)
size 〈x〉 ∈ Z+ of some object x is the number of digits that is needed to
encode x under a specified encoding scheme.1 A problem is then simply a
subset Π of B∗ × B∗, and τ ∈ B∗ is a solution of instance σ ∈ B∗ if and only
if (σ, τ) ∈ Π. We will assume that for all instances σ ∈ B∗ there is a solution

1We always assume the natural encoding scheme: An integer n ∈ Z is encoded as a binary
string using 〈n〉 = 1 + 	log2(|n| + 1)
 digits. When we group simpler objects into pairs,
vectors, sets and more complicated objects, we assume that the size of the compound
object is the sum of sizes of its parts (ignoring the digits that would be used to indicate
that and how the sting is to be interpreted as a compound object).

6

2.2 Algorithms and Complexity

τ ∈ B∗ such that (σ, τ) ∈ Π, possibly by introducing a solution that encodes
the answer “no solution”.
An algorithm is a set of instructions that can be executed under a

deterministic computing model with the possibility of initially reading
input and of finally producing output and halt. The output of an algorithm
M on input σ is denoted byM(σ). We say thatM computes τ from σ if and
only if τ =M(σ). An algorithmM is said to solve problem Π if and only if
(σ,M(σ)) ∈ Π for all σ ∈ B∗. Formally, the computing model we use is that
of a Turing machine (see Grötschel et al., 1988, for details). Quite informally
it can be thought of as an algorithm running on an ordinary computer, on
which basic instructions (read a symbol from B from the current memory
position, write a symbol from B to the current memory position, move
the current memory position forward/backward, change the computers
state register) are sequentially executed on a single processor, just with the
difference that there is access to unlimited memory. With this excuse we
will use algorithm as a synonym for Turing machine.
The time complexity function TM : Z+ → Z+ ∪ {∞} of an algorithm is

defined such that TM(n) = m if and only if m is the maximum number of
basic instructionsM executes to reach a halt state for inputs of size n. An
algorithmM is said to be polynomial-time if and only if there is a polynomial
p such that TM(n) ≤ p(n) for all n ∈ Z+.

2.2.2 Decision Problems and the Classes P and NP

A decision problem is a particular kind of problem where the question is
of such a type that it can only be answered by “yes” or by “no”. To be
precise,Π is a decision problem if and only if for all σ ∈ B∗ either (σ, 0) ∈ Π
or (σ, 1) ∈ Π, and (σ, τ) ∈ Π implies τ ∈ B. The string τ = 1 represents the
answer “yes”, while τ = 0 means “no”. An instance is called a yes-instance
if its answer is “yes” and a no-instance otherwise.
The complexity class P is defined as the class of decision problemsΠ for

which there is a polynomial-time algorithmM such that, for all σ ∈ B∗,

(σ, 1) ∈ Π ⇔ M(σ) = 1.

In other words,M solves Π in polynomial time.
The complexity class NP is defined as the class of decision problems Π

for which there is a polynomial-time algorithmM and a polynomial p such
that, for all σ ∈ B∗,

(σ, 1) ∈ Π ⇔ ∃τ ∈ Bp(〈σ〉) :M(σ, τ) = 1.

7

Chapter 2 Preliminaries

For a problem in NP it can be verified in polynomial time that some string
τ is a short certificate for that the instance is a yes-instance.
The class NP is asymmetrically defined with respect to yes- and no-in-

stances. However, we can as well negate the question of any decision
problem to get a new decision problem. For a decision problem Π, the
complementary problem is {(σ, 1 − τ) : (σ, τ) ∈ Π}. For any class of decision
problems C, the problems complementary to the problems in C form the
class coC.

2.2.3 Transformations, Oracles and Reductions

It is sometimes desirable tomeasure the complexity of a problem relative to
the complexity of another problem. New knowledge about the complexity
of one problem may then shed a new light on the complexity of the other.
A polynomial transformation from decision problemΠ to decision problem

Π′ is a polynomial-time algorithmM that takes an instance σ ofΠ as input
and outputs an instanceM(σ) of Π′ such that, for all σ ∈ B∗, the following
holds: M(σ) is a yes-instance of Π′ if and only if σ is a yes-instance of Π.
A polynomial transformation from one decision problem Π to another
decision problem Π′ makes the latter at least as hard as the former: Π′ ∈ P
(Π′ ∈ NP) implies Π ∈ P (Π ∈ NP).
For the search for efficient algorithms it makes sense to identify those

decision problems that seem to be the hardest within a complexity class C.
A problem Π ∈ C is called C-complete if and only if from every problem
in C there is a polynomial transformation to Π. A justified question is
whether such problems exist at all. With the satisfiability problem SAT,
Cook (1971) was the first to identify an NP-complete problem.

SAT: Given a Boolean formula2 ϕ in CNFwith n variables, decide
whether

∃x ∈ Bn : ϕ(x) = 1.

2For an introduction to Boolean formulae and logic we refer to the literature (Kleine Büning
and Lettman, 1999, for instance). In short, a Boolean formula is recursively defined as:
variables α j are Boolean formulae, and if ϕ and ϕ j, j ∈ M with finite M, are Boolean
formulae, then so are the negation ¬ϕ, the conjunction

∧
j∈M ϕ j and the disjunction

∨
j∈M ϕ j.

A literal is a Boolean formula that is either a variable or the negation of a variable. A
Boolean formula in CNF is a conjunction of disjunctions of literals, a Boolean formula in
DNF is a disjunction of conjunctions of literals. We can assign truth values T(α j) ∈ B to
the variables α j, j ∈ [n], and then evaluate the truth value T(ϕ) ∈ B of the formula ϕ. If
x ∈ Bn is a vector of truth values and T(α j) = xj for all j ∈ [n], we define ϕ(x) � T(ϕ). If
ϕ(x) = 1, then T is called a satisfying truth assignment.

8

2.2 Algorithms and Complexity

There is an extensive list of problems nowknown to beNP-complete (Garey
and Johnson, 1990). The significance of the existence of NP-complete
problems is that, if any of them turns out to be in P, then P = NP.
Often, problems are solved by calling algorithms for other problems

as a subroutine. An algorithm with an oracle for problem Π is an algorithm
augmented by the following feature: The algorithm can, as often as it
needs to, call the oracle for an instance σ of Π, and the oracle returns the
solution τ for this instance. It is assumed that this miraculously happens
within one time step and that the size of the solution is bounded by a
polynomial in the size of the instance. Because the call to the oracle counts
as one time step, an algorithm with an oracle can be polynomial-time even
if the oracle solves a problem not known be solved by a polynomial-time
algorithm.
A Turing reduction from Π to Π′ is a polynomial-time algorithm with

an oracle for Π′ that solves Π. We say that Π is Turing reducible to Π′ if
and only if there is a Turing reduction from Π to Π′. Turing reductions
can be applied to general problems, not just decision problems. For any
complexity class C, a problem Π is called C-hard if and only if there is a
Turing reduction from some C-complete problem to Π. A problem Π is
called C-easy if and only if there is a Turing reduction from Π to some
problem in C. A problem is called C-equivalent if and only if it is C-easy
and C-hard.

2.2.4 Beyond NP and the Polynomial Hierarchy

With our definition of NP-hardness we also captured grossly all decision
problems that we believe to be at least as hard as those in NP. In fact, there
are different levels of hardness above NP.
With PNP we denote the decision problems that are Turing reducible to a

problem in NP. These are exactly the NP-easy decision problems. Clearly
NP ⊆ PNP. There are PNP-complete problems: Wagner (1987) proved that
MaxSATodd is one.

MaxSATodd: Given a Boolean formula ϕ in CNF with n variables,
decide whether the optimization problem

max{
∑

j∈[n]
2 j−1xj : ϕ(x) = 1, x ∈ Bn}

is feasible and the optimal objective is odd.

An infinite hierarchy of problems above NP was introduced by Meyer

9

