
Chapter 1

Introduction

More than a decade ago, the idea of wireless sensor networks (WSNs) was first intro-

duced. These networks consist of small, resource-constrained devices, only equipped

with a low-end microcontroller and a radio transceiver for wireless communication.

The devices are usually battery driven, and monitor their environment with the help

of attached sensors. They perform distributed in-network data processing, in contrast

to centralized approaches were devices are controlled by a single unit. This way, al-

gorithms become more scalable, and communication costs can be reduced by sending

only relevant data to a central station. WSNs have become a well-established research

area, which led to a large number of available algorithms, hardware platforms, and

operating systems.

In recent years, however, the focus has shifted to the Internet of Things (IoT),

which aims at the interconnection of every-day devices such as smartphones or radio-

frequency identification (RFID) chips. With the IoT, even more new and different

heterogeneous platforms were introduced.

Unfortunately, this diversity of hardware platforms and operating systems has not

been successfully addressed yet. Operating systems such as Contiki or TinyOS cover a

number of hardware architectures, but by far not all available systems. Adding support

for a new platform is usually difficult and requires low-level development and a pro-

found understanding of the underlying hardware; it is simply impossible to run such

an operating system on a smartphone. Interoperability is also only rarely achieved:

Even two nodes of the same kind cannot communicate with each other when running

different operating systems.

The situation is similarly desperate when considering standard algorithm imple-

mentations; each operating system usually uses its own—very system-specific—im-

plementations of routing, localization, or time-synchronization algorithms. Conse-

quently, there are many implementations of the same algorithm, each with its own

peculiarities. Even worse, each implementation is also tested and evaluated separately,

which is unnecessary overhead that is better avoided.

Together with the separate solutions in hardware platforms, operating systems, and

algorithm implementations, also very specialized testbed installations are used. Usu-

3



4 Introduction

ally, testbeds consist of only homogeneous nodes. First, because maintenance costs are

considerably lower when dealing only with one kind of node. Second, an institution

that sets up a testbed generally uses only a single operating system; hence, multiple

hardware platforms are not required.

The current state of isolated hardware and software platforms as well as present

testbed installations do not adequately reflect the arisen demands on testing algorithms

in large networks with various node architectures. Heterogeneity plays an essential

role for ongoing and future research. It is no longer sufficient to address only particular

subareas of the target domain; instead, the entire problem space must be considered at

once. Already several approaches are available, mostly in terms of generic operating

systems or middleware solutions, but none of these systems fully solves the problem.

We state three fundamental factors that are essential to successfully address het-

erogeneity in distributed, embedded systems:

• New programming paradigms. While modern programming paradigms such

as object-oriented software development and generic programming techniques

are already well established for desktop computers, this is not the case for em-

bedded systems. The dominant programming language is still C, although more

promising and also more efficient results can be achieved by a well-considered

use of C++.

• Heterogeneous testbed design. When building a testbed for distributed embed-

ded systems, heterogeneity must be the main factor in all fundamental design

decisions. This is of utmost importance to sufficiently address the demands of

future research. Heterogeneity, in this context, does not only cover the purely

wireless nodes, but also deployed sensors and—if any—actuators.

• Novel communication channels. With the increasing importance of hetero-

geneity, using only standard communication channels is no longer sufficient. We

may deal with devices that cannot communicate with others because of incom-

patible radios or distant positioning. Hence, the default type of communication

must be extended to more flexible and dynamic approaches.

We address each of these topics separately in detail, and provide promising solutions to

be used in current and future installations of distributed heterogeneous embedded sys-

tems. We address the full cycle of software development for these systems. Beginning

with general programming paradigms suitable for an efficient usage even on low-end

microcontrollers, we thereon present the design and final installation of a heteroge-

neous testbed, capable of dealing with many future requirements especially arising in

the context of the IoT. Finally, we develop novel communication links, which enable

advanced evaluation and testing techniques, for example unit testing for networks of

distributed embedded systems.



5

Organization of this Work. In Chapter 2 we describe successful software design tech-

niques to develop algorithms and applications for heterogeneous embedded systems.

We therefore study several existent approaches, and see that none of them is suffi-

ciently generic and efficient at the same time. We show that it is possible to transfer

modern programming techniques—using C++ and templates—to embedded systems;

such a design is already successfully used in several software libraries for desktop

computers, but so far it has not been used on low-end microcontrollers.

In Chapter 3 we present the Wiselib, a successful implementation of the program-

ming paradigms introduced before. The Wiselib is an algorithms library for embedded

systems, completely developed in C++, and running on top of various standard oper-

ating systems such as Contiki and TinyOS. The idea is to develop an algorithm—for

instance, routing or time-synchronization—once, and compile it for different platforms

without changing a single line of algorithm code. We also show that by using a mod-

ern programming language, the compiler is able to generate very efficient code, both

regarding code size and execution time. At best, potential glue code is completely

removed by the compiler, and the algorithm is built as if compiled directly for the

corresponding platform.

In Chapter 4 we present the design and installation of a heterogeneous testbed for

distributed embedded systems. We installed load sensors beneath the floor of a hallway

at our university, and passive infrared sensors (PIRs) at the walls; both sensor types

are connected to wireless sensor nodes, allowing the development of sophisticated in-

network data-processing algorithms such as target tracking. Furthermore, actuators

were installed, each consisting of a light-emitting diode (LED) and a speaker unit to

play sound samples. Employing these units, the sensor nodes can interact with passers-

by, providing possibilities to, for example, playing interactive games.

In Chapter 5 we study selected applications that were implemented on the hallway

testbed. We give an example of target tracking, showing the hallway’s suitability for se-

curity applications or the field of Ambient Assisted Living (AAL). We also present an

example related to medical testing, where the hallway can be used to assist a physician

in an examination, providing more reliable results than possible by current standard

methods. Furthermore, we give an outlook on future applications, where the hallway

is used for advanced algorithm development.

In Chapter 6 we introduce a novel mechanism of connecting nodes that cannot

communicate directly with each other. Examples for such an inability are distant

testbeds or radios using different communication frequency bands. We describe the

idea of virtualized communication, where messages are sent both via the physical ra-

dio of a node and the Internet using a gateway; in the latter case, messages are injected

at the destination node as if received over ordinary radio. Hence, the virtualization is

fully transparent to the upper layer. We also connect real nodes with simulated ones

using this mechanism, which considerably enhances general debugging possibilities

for distributed embedded systems.



6 Introduction

The papers forming the foundation of this work were prepared in collaboration

with other people. Above all, Sándor P. Fekete and Alexander Kröller contributed

ideas and thoughts to almost all aspects of this work.

Many people—almost all partners from the EU-projects WISEBED [WIS11] and

FRONTS [FRO11], as well as several students from our university—contributed im-

plementations to the Wiselib. Most notably, we had a close collaboration in the prepa-

ration of the fundamental Wiselib paper [BCF+10] with Ioannis Chatzigiannakis and

Christos Koninis.

The construction of the hallway testbed was mainly supported by three colleagues

from our institute: Henning Hasemann, Tom Kamphans, and Max Pagel contributed

much time and effort to successfully build the initial setup and maintain the running

installation.

The part about virtual communication was done with partners from the corre-

sponding EU-project WISEBED. Ioannis Chatzigiannakis and Christos Koninis
contributed to the foundations, focusing on flexible interconnection of distant testbeds,

and re-configuration for changing topologies in a network. Dennis Pfisterer and

Daniel Bimschas developed the underlying software framework for gateway comput-

ers, building the base for testbed inter-connection.



Part I

Generic Algorithm Development



Chapter 2

Software Design Techniques for
Heterogeneous Embedded Systems

This chapter discusses software design techniques for the development of generic ap-

plications for distributed, heterogeneous embedded systems by taking additional tar-

gets such as simulation environments or emulators into account. Since we deal with

tiny embedded systems—for instance, microcontrollers with only a few kilobytes of

program memory—the main objective is an efficient and generic concept, in which the

cost of generality regarding code space or runtime overhead is as small as possible. We

learn that by using the modern programming language C++ and only standard language

features, it is possible to create a software library that fulfills all of our requirements.

2.1 Problem Statement

In the last decade, WSNs have become an important and well-studied research field.

We have seen a tremendous amount of algorithm developments, especially designed

for low-end microcontrollers and focusing on the limiting resource constraints of these

platforms. Concurrently, also a variety of sensor nodes were designed—platforms

equipped with tiny microcontrollers and a radio transceiver, usually driven by a battery.

In recent time, the focus has changed to the IoT, covering even more platforms, and

establishing the vision of joining very different electronic devices together to appear

to the outside world as a single homogeneous system.

Software development for heterogeneous embedded systems is a highly challeng-

ing task. With the diversity of available platforms, there is also a correspondingly high

amount of different operating systems in use, considerably complicating the issue of

finding a generic solution that adapts perfectly well to the individualities of each avail-

able system. This diversity, with respect to both the availability of operating systems

and the wide differences in hardware capabilities, makes it difficult to find a solution

that is adopted by the various communities. Figure 2.1 shows potential target plat-

forms from the wireless embedded world. Our targets range from tiny sensor nodes

9



10 Software Design Techniques for Heterogeneous Embedded Systems

(a) iSense sensor node. (b) TelosB sensor node. (c) iMote2 sensor node.

(d) Ordinary wireless router. (e) Android-based smartphone. (f) Apple’s iPod Touch.

Figure 2.1: Potential target platforms. Various target platforms for a software library
for distributed, embedded systems. Platforms range from tiny sensor nodes over ordi-
nary wireless routers to powerful smartphones.

up to smartphones or wireless routers. We see that the capabilities of the selected

platforms—even in this small subset—are very diverse.

Furthermore, each of these systems is usually equipped with a radio transceiver,

leading to wirelessly connected distributed systems. Hence, an important design factor

for a software architecture is the possibility of communication between the various

nodes: Keeping in mind that two platforms may be totally distinct, with different word

lengths, different byte ordering, and a different hardware architecture. The final vision

is a framework, where any algorithm can be implemented once, and then run on any

supported platform. Even more, such an algorithm can be put on heterogeneous nodes,

where it may be fully transparent to the algorithm that it runs on different kinds of

hardware and that it may communicate wirelessly with entirely different hardware

architectures.



Problem Statement 11

There are several possibilities to develop a system that fulfills our requirements.

Beginning with the design of a new embedded operating system, up to a middleware

approach that runs on top of existing systems. Since there are already a lot of dif-

ferent operating systems available, many of them advantageous for specific hardware

platforms, it may be too complex to develop a generic solution from scratch. More-

over, such newly designed systems may not be adopted by developers who are already

familiar with an existing system. Finally, porting to a new platform can be a very com-

plex task, involving the understanding of low-level platform development. Hence, a

middleware-like approach is the most promising one: A framework that runs on top

of existing operating systems. However, again it is important to not force developers

to learn the handling of a completely new system. Keeping hold of as much as possi-

ble well-known system behavior is a crucial factor for the adoption of a new software

architecture by the general public.

Another issue is that we have basically two potential target groups dealing with

distributed, embedded systems: Theorists, mainly developing provable optimal algo-

rithms, but often do not evaluate their ideas in practice; and practitioners, keen in

the development of algorithms on hardware, but often using simple protocols due to

complex problems when dealing with physical characteristics of real testbeds. An in-

teresting opportunity for a newly designed software framework is to bridge the gap

between these groups. When such a framework creates a simple development envi-

ronment where algorithms can be easily implemented, it would be adopted by the-

orists, resulting in implementations of mathematically profound algorithms and pro-

tocols that can be used on real hardware. On the other hand, practitioners can benefit

from this progress, having more and most notably more reliable implementations avail-

able. However, for a long-term success story of such a collaboration, it is important

that both parties work closely together.

Putting all the requirements together, the development of a generic software archi-

tecture for heterogeneous embedded systems is a sophisticated task. Even on ordinary

desktop systems, where restrictions concerning code size or runtime issues are usually

very lax, it is not obligatory to support different operating systems. This is due to sev-

eral reasons. First of all, we usually deal with different compiler manufacturers—for

example, Visual Studio on Windows systems versus the wide-spread GNU Compiler

Collection (GCC)1. Next, even if the same compiler is used, one must still deal with

different library versions. This is especially problematic with Linux, since library ver-

sions are often even different under several distributions. Furthermore, it is usually

more convenient to develop for an operating system when using native functionality.

A prominent example is multi-threading, which is very system-specific for Windows

and Unix systems; if not using platform-independent libraries such as Boost to hide

these peculiarities.

There have been attempts to circumvent these problems. Well-known examples are

platform independent solutions such as Java or the .NET framework. However, even

1The GCC is mostly used on Linux or Apple’s MAC OS, but is also available for Windows systems.



12 Software Design Techniques for Heterogeneous Embedded Systems

those approaches show certain disadvantages. While the .NET framework runs only on

Windows systems, alternative implementations such as Mono are still not fully com-

patible. Java, on the other hand, is much more promising, while still not completely

successful. When developing Web or database applications, the code is usually fully

platform independent; serial communication with attached systems, in contrast, is sur-

prisingly problematic. The RXTX library, which is commonly used for such tasks—

for example, communication with a device connected over a FTDI chip—comes with

native implementations via JNI, and provides pre-compiled libraries for various plat-

forms. This complicates the transfer of applications to other systems, because these

libraries must be distributed separately.

These problems known from ordinary desktop systems are even more existent in

the embedded world. Not only that the operation systems vary in the used program-

ming language and basic design issues (i.e., event-driven vs. multi-threaded), but also

the hardware capabilities are very different. There are even nodes available with only

a few kilobytes of program memory, or only one kilobyte of volatile memory. Hence,

a crucial factor for a successful software framework in the embedded world is effi-

ciency. This incorporates both code space and runtime issues. The former leads to

a demand for a slim solution, in contrast to present middleware approaches, where

the middleware itself often takes most of the available memory. The latter—runtime

efficiency—is far more important on tiny microcontrollers than on ordinary desktop

systems, since processor speed can differ in a magnitude of thousands.

Possibilities in software design are considerably influenced by the chosen program-

ming language. Today, most applications for embedded systems are written in pure C,

while recently there is also the use of modern programming languages such as C++

observable. Java, on the other hand, is only very sporadically visible due to the re-

quirement of the availability of an entire virtual machine—which is too much overhead

for tiny microcontrollers. We analyze the impact of choosing the object-oriented pro-

gramming language C++ and evaluate potential overhead when only certain features

of the language are carefully selected. If it is possible to use such a modern program-

ming language for the development of a software architecture on embedded systems,

the resulting approach can have formidable advantages over existing solutions: A clear

and type-safe design that is easily usable, while generating very efficient code.

On desktop systems, there are already well-known libraries established, written

in C++. Examples are the Standard Template Library (STL) [Jos99], the Computa-

tional Geometry Algorithms Library (CGAL) [Ket99], and Boost [Kar05]. They share

a prominent programming concept, resulting in highly efficient code: C++ templates.

With the aid of this concept, one can develop generic and exchangeable applications,

where the price of generality is paid at compile time. If adapted to embedded systems,

it would result in a powerful software architecture that can cover very different hard-

ware and software platforms, and a compiled application can adapt perfectly well to

the corresponding needs.

Section 2.2 discusses the problem space by exploring potential target platforms

of a software architecture for heterogeneous embedded systems. In Section 2.3, an



Problem Space 13

Table 2.1: Evaluation of potential target platforms. The columns refer to the sensor
node type, the standard operating system, the type of microcontroller, the programming
language for it, what kind of dynamic memory is available, the amount of ROM and
RAM, and the word length.

Hardware CPU Firmware/OS Language Dyn Mem ROM RAM Bits
iSense Jennic JN5139 iSense FW C++ Physical 128kB 96kBa 32

iSense v2 Jennic JN5148 iSense FW C++ Physical 512kB 128kBb 32

SCW MSB-A2 NXP LPC2387 μkleos C None 512kB 98kB 32

SCW MSB430 MSP430 SCW2, Contiki C None 48kB 10kB 16

TelosBc MSP430 Contiki,TinyOS C, nesC Physical 48kB 10kB 16

G-Node MSP430 TinyOS nesC Physical 116kB 8kB 16

INGA ATmega1284P Contiki C Physical 128kB 16kB 8

MicaZ ATmega128L Contiki,TinyOS C, nesC Physical 128kB 4kB 8

Waspmote ATmega1281 Waspmote API C/C++ Physical 128kB 8kB 8

Arduino Nano 2.3 ATmega168 Arduino SW C/C++ Physical 16 kB 1kB 8

Arduino Nano 3.0 ATmega328 Arduino SW C/C++ Physical 32 kB 2kB 8

iMote2 Intel XScale TinyOS, Linux nesC,C/C++ Physical 32MB 32MB 32

iPhone, iPod ARM iOS C++, Obj-C Virtual ≥8GB ≥128MB 32

Smartphone ARM Android C/C++, Java Virtual ≥2GB ≥64MB 32

Desktop PC various Shawn C++ Virtual unlimited unlimited 32/64

Desktop PC (ATmega128L) TOSSIM nesC (Physical) unlimited unlimited (8)

Desktop PC various Win/Linux/MAC C/C++ Virtual unlimited unlimited 32/64

ashared for program and data
bshared for program and data
cidentical in construction with Tmote Sky

overview on existing approaches is presented, both in the embedded world and suc-

cessful libraries from desktop systems, followed by a discussion of the possibilities of

using C++ on embedded systems in Section 2.4. Finally, a promising software design

is presented in Section 2.5.

2.2 Problem Space
When developing a software architecture for heterogeneous embedded systems, one

must deal with a great variety of different hardware and software platforms. Table 2.1

shows an overview of platforms that are important and interesting both in the area of

sensor networks and the upcoming field of IoT.

The hardware platforms vary from sensor nodes such as INGA [BKW11, KBPW11],

iSense [BP07], or TelosB [PSC05] over smartphones and simulation environments to

ordinary desktop computers. The latter are taken into account to be able to integrate

such systems directly into existing networks—for instance, as a sink for sensed data

or as a high-performance computation node, useful for certain kinds of algorithms.

These platforms come with very different kinds of processor architectures, ranging

from tiny microcontrollers such as the MSP430 or the Atmel ATmega to powerful

processors such as Intel XScale or ARMs. As with the hardware, there are also var-

ious operating systems in use. There are both system-specific implementations—for




