
pChapter2

Self-Stabilization

This chapter provides an introduction to self-stabilizing algorithms and related work.

The first section describes conventional distributed algorithms and the models of

computation. Section 2.2 starts with the categorization of faults in distributed systems

and fault tolerance. It introduces self-stabilization and gives a more formal definition of

the terms and concepts used in this thesis. Several methods to measure the complexity

of self-stabilizing algorithms are discussed. Section 2.3 presents methods to design a

self-stabilizing algorithm. Finally, Section 2.4 provides an overview of self-stabilizing

algorithms for classical graph problems. More related work on specific problems can

be found in the corresponding chapters.

2.1 Distributed Algorithms

In the literature, different definitions for the term distributed system can be found.

Tanenbaum and van Steen [TS06] provide a definition that emphasizes the transparency

property:

A distributed system is a collection of independent computers that appears

to its users as a single coherent system.

A famous aphorism by Lamport [Lam87] alludes to this property:

A distributed system is one in which the failure of a computer you didn’t

even know existed can render your own computer unusable.

5

2 SELF-STABILIZATION

Bal et al. [BST89] characterize a distributed system in a more technical manner:

A distributed computing system consists of multiple autonomous pro-

cessors that do not share primary memory, but cooperate by sending

messages over a communication network.

They also discuss the disagreement on the term "distributed system" in the literature

[BST89]. The definition of Bal et al. will be used throughout this thesis with the un-

derstanding that this definition is not limited to physical processors but also considers

other autonomous units or nodes such as processes. The latter is what Bal et al. call a

logically distributed software system, but their distinction is not needed on the level of

abstraction of this thesis. The communication network mentioned in the definition is

considered to be a (connected) graph and only adjacent nodes can communicate with

each other directly.

Two main models of distributed systems are distinguished in the literature [Pel00]:

The synchronous model and the asynchronous model, the difference being whether

there are upper bounds on the time certain processes are allowed to consume. The

asynchronous model does not make any assumptions on the duration of a computa-

tional step or message delay, apart from being finite. Thus, messages that are sent

but not received within a certain time cannot be considered to be lost but may be

received later. On the other hand, the synchronous model assumes fixed time intervals

for computations and guarantees that any message is received within a given time

(which is known to all nodes). Hence, an advantage of synchronous systems is that

lost messages can be detected. In this thesis the degree of synchrony of the distributed

system is determined by the model used for the atomicity of communication and the

assumed scheduler. These terms will be explained later. More detailed information

about distributed systems in general can be found e.g. in [CDK05].

A distributed algorithm is an algorithm specifically designed to run in a distributed

system. The nodes can operate concurrently and they communicate with each other to

achieve a common goal. The most significant difference compared to conventional

algorithms is the lack of a central entity that has access to the global state, i.e. the

state of each node. All nodes act autonomously and the basis for their decisions is

local knowledge only: The nodes hold their own state and can retrieve the state of

their neighbors.

6

2.1 DISTRIBUTED ALGORITHMS

It is possible to gather the local state of all nodes by passing a neighbor’s state

on to the next node until some special node has aggregated the information of the

whole system and can send tasks to the other nodes, but that is contrary to the idea

of a distributed algorithm. Furthermore this procedure requires time and memory

proportional to the size of the graph. The same arguments hold for a similar approach:

If all nodes determine the topology of the whole distributed system, they can calculate

their final state locally via the execution of an algorithm that is not restricted to local

knowledge.

Having a “distributed state” and nodes that execute their algorithm according to

local information only, different parts of the system may temporarily veer away from

their common goal without knowing it. This also depends on the locality of the

given problem or algorithm, i.e. to which extent the state of a node far away from a

certain node influences its own state. An example for such a dependency is given in

Section 4.2. More information about the locality of specific problems can be found in

[NS95, MNS95, AGLP89, Suo11].

The atomicity of communication between the nodes can be modeled in miscella-

neous ways for distributed algorithms [AW04, Tix09]. Tixeuil [Tix09] emphasizes

that most literature in the context of self-stabilizing algorithms uses a high level of

atomicity and lists the three most common models:

1. The state model (or shared-memory model with composite atomicity, [Dij74,

Dol00]): In this model, reading the states of all adjacent nodes and updating its

own state is considered an atomic action.

2. The shared-register model (or read-write atomicity model, [DIM93]): This

model treats a single read and a single write operation as atomic actions. This

model is the more general one, but there are methods for transforming algorithms

from one model to the other [Dol00].

3. The message-passing model [AB93, DIM97a, KP90]: Here, an atomic step con-

sists of either sending a message to one of the neighboring nodes, or receiving

such a message.

The latter model requires to explicitly use the send and receive operation in an

algorithm to exchange messages. The first two models simulate a common memory

area for two adjacent nodes. In these cases, lower layers realize the information

7

2 SELF-STABILIZATION

exchange [Tel01]. Where not explicitly stated otherwise, this thesis assumes the state

model for the algorithms. Another model is often used for algorithms in anonymous

networks (see below):

4. The link-register model with composite atomicity [DIM93]: In this model, a

node uses two separate registers for each neighbor (a read and a write register),

i.e. a node can only read “its own” segment of its neighbors memory. Reading

its registers from all neighbors and updating its own registers is considered

one atomic operation. A more formal introduction to the link-register model is

provided in Chapter 5.

Distributed algorithms substantially depend on the properties of the underlying

network. In a uniform network all nodes execute the same algorithm. Non-uniform

networks allow the nodes to execute distinct algorithms. A very important property

is the availability of a symmetry-breaking mechanism. Such a mechanism is needed

e.g. if it is undesirable that two adjacent nodes change their state at the same time.

The most common model assumes all nodes to have unique identifiers. These can be

used to ensure local mutual exclusion. For instance, in [GT07] the nodes have to set a

boolean flag to tell their neighbors in advance when they want to change their state. A

node is allowed to change its state only if none of its neighbors with smaller identifier

has also set its flag.

Non-uniform networks can use another mechanism to break the symmetry by having

a node that takes on a special role. These two network models are equivalent [Dol00].

In uniform networks without unique identifiers it is possible to use randomization

to break symmetry. Availing oneself of randomization results in a probabilistic

algorithm, though. A network is called anonymous if it is uniform and there are no

further symmetry breaking mechanisms such as unique identifiers or randomization.

A lot of research has been done in the field of algorithms in anonymous networks.

Angluin made the most remarkable publication in that area by proving several impos-

sibility results subject to the different anonymity properties of the network [Ang80].

In particular Angluin showed that it is impossible to break symmetry via a port num-

bering (i.e., an edge ordering, for details see Chapter 5) in general graphs. Most of the

algorithms in this thesis assume a uniform network and that all nodes have (locally)

unique identifiers. Only in Chapter 5 an anonymous network is assumed.

8

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

2.2 Fault Tolerance and Self-Stabilization

In general, it is impossible to guarantee that a system will stay free of faults all the

time. Hence, there must be a strategy to handle errors if they occur. Conventional

systems may have a central unit that detects errors and decides which measures have

to be taken. In a distributed system, error-handling is inherently more difficult: The

detection of an error is not as simple due to the lack of a node with global knowledge,

and also the nodes have to cooperate and coordinate their actions in order to overcome

the erroneous state. Furthermore, there are types of errors that occur more likely in a

distributed system. For instance, in a wireless sensor network a node can fail due to a

depleted battery or physical damage. Messages can get lost, they may be duplicated

or arrive in a different order.

Apart from errors there are other scenarios that can make a distributed system end

up in an illegitimate state, e.g. if new nodes are added to the system or some nodes are

removed from it. Locating the source of an error, replacing or removing an erroneous

node, or permanently monitoring the whole system to detect faults and perform a

global reset as needed can be complex and expensive.

If a distributed system does not tolerate any errors the fault of a single node can

corrupt the whole system, i.e. if this node exclusively offers an essential service to the

other nodes. There are several strategies to deal with faults. They will be discussed

after a short classification of faults in distributed systems.

2.2.1 Classification of Faults in Distributed Systems

This section is based on [Tix09]. Another taxonomy of faults and fault-tolerance can

be found in [Gär99]. Tixeuil distinguishes the nature of a fault, depending on whether

it involves the state or the code of a node. State-related faults only affect – as the

name says – the state of a node, i.e. the node’s variables may change their values

erroneously. Such errors occur e.g. due to cosmic rays or because of the continuously

decreasing transistor size. Code-related faults compromise the node’s behavior. This

category includes crashes, omissions, duplications, desequencing and Byzantine faults

[LSP82]. A more detailed description can be found in [Tix09].

Another criterion is the type of a fault. This aspect classifies the time span in which

faults of arbitrary nature can occur. Three types are distinguished: Transient faults

9

2 SELF-STABILIZATION

are considered not to occur after a given point in the execution, i.e. there is a “last”

transient error. In contrast, permanent faults stay permanently after a given point in

the execution. Intermittent faults have no further limitation. Such faults can hit the

system at any time. The latter type of faults is the most general one and subsumes the

other two types. However, if intermittent faults do not occur too frequently, it may be

sufficient to have a system tolerate transient faults provided that the time interval in

which it stays operational is long enough.

A third category in the fault taxonomy of Tixeuil is the extent (or span) of the faults,

describing how many components of the network can get hit by an error. In this thesis

the extent of faults is insignificant.

2.2.2 Fault Tolerance and Self-Stabilizing Algorithms

Depending on the application area of the distributed system there are several ap-

proaches to deal with faults of nodes. It may be necessary that the functionality is kept

up permanently. In this case, a masking approach is required. This category of fault

tolerance hides all errors from the application, the system stays operational without

restrictions. In case the continuous effective operation of the system is too expensive

to guarantee or not essential a non-masking solution is possible: Such an approach

accepts that the system does not work properly for a given time span, it suffices that it

will resume its normal behavior when the fault is resolved. These two strategies lead

to two major categories of fault tolerant algorithms [Tix09]:

1. Robust algorithms have a redundant layout for all critical components or calcu-

lations based on the expected error rate. Hence, if the system is hit by a bounded

number of faults, the spare components keep the system running. Usually,

robust algorithms follow a masking strategy. However, apart from being more

expensive than non-masking approaches due to the additional resources for

redundancy, robust algorithms require a clear concept of the (number of) errors

that may occur. For instance, an algorithm that uses triple modular redundancy

[vN56] can only cover up an error on a single component and may not work if

another module fails.

2. Self-stabilizing algorithms follow a non-masking error strategy and assume all

errors to be transient (cf. Section 2.2.1). Hence, no assumptions about their

10

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

nature or extent have to be made. An algorithm is self-stabilizing if it can

start in any possible configuration, reaches a legitimate configuration in a finite

number of steps by itself without any external intervention, and remains in a

legitimate configuration [Dij74, Dol00]. Note that being able to start from any

configuration implies that a self-stabilizing algorithm cannot rely on explicit

initialization of variables.

The self-stabilization approach was presented by Dijkstra in [Dij74]. It did not attract

much attention at first but became more and more popular in the late 1980s and has

registered an increase in research activity recently [Dol00]. Some important results

for classical graph problems are listed in Section 2.4.

The following definition allows to precede the formal introduction to self-stabilization

with a real-world example: According to Arora and Gouda, an algorithm is self-

stabilizing if the following two properties hold [AG93]:

� Convergence property: After a finite number of moves the system is in a

legitimate configuration irrespective of the configuration the algorithm starts

with if no further transient error occurs.

� Closure property: If the system is in a legitimate configuration, this property is

preserved if no further transient error occurs.

Figure 2.1 demonstrates these properties using a well-known example. A wobbly

man fulfills the convergence property since it always returns to its balanced position

irrespective of its initial displacement. Having reached its stable state it will not start

leaving this position by itself, hence the closure property also holds.

Note that a self-stabilizing algorithm may not be able to establish a legitimate

configuration at all if faults occur too frequently, i.e. if the next error occurs before

the algorithm has stabilized. Gärtner states that self-stabilizing algorithms can also

deal with certain classes of permanent faults, e.g. when there is a sufficiently long

error-free period of time [Gär98]. In principle this complies with the assumptions

made in most publications about self-stabilization which consider all errors to be

transient, i.e. no further error occurs during the stabilization process.

In the literature, two types of self-stabilizing algorithms can be found: Silent (or

static) self-stabilizing algorithms stop when they have reached a legitimate configu-

ration, i.e. no node will change its state with respect to this algorithm until the next

11

2 SELF-STABILIZATION

�� Figure 2.1: A real-world example for self-stabilization: A wobbly man (drawing

by Christian Renner) always returns to its balanced position in finite time without

external intervention, if no further impulse hits it.

fault occurs. Hence, the wobbly man (Figure 2.1) also serves as an example for a

silent algorithm. Most algorithms that establish a structure on the graph, such as e.g. a

matching, are silent. All self-stabilizing algorithms presented in this thesis are silent.

A reactive (or dynamic) algorithm does not terminate at all. However, it is guaran-

teed that once a legitimate configuration is reached, the set of legitimate configurations

cannot be left. A common example for a reactive self-stabilizing algorithm is mutual

exclusion [Dij74, DGT04].

2.2.3 Terms and Definitions

This section introduces the technical terminology of the area of self-stabilizing algo-

rithms. A formal model of these terms is required by some of the proofs in this thesis.

To establish a balance between mathematical symbols and readability, all terms are

illustrated with the help of an intuitive self-stabilizing algorithm.

In a distributed system the communication relation is represented by an undirected

graph G = (V, E), with n = |V| and m = |E|, where each process is represented by
a node in V and two processes vi and vj are adjacent if and only if 〈vi, vj〉 ∈ E. The
set of neighbors of a node v ∈ V is denoted by N(v). The closed neighborhood of a
node v is denoted by N[v] = {v} ∪ N(v). The diameter of G is denoted by D and

the maximum degree of G is denoted by Δ.

In [Tur07] Turau presented a self-stabilizing algorithm for the calculation of a max-

imal independent set of a graph. It is shown in Algorithm 2.1. A subset S ⊆ V forms

12

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

an independent set if no two nodes of S are adjacent. S is a maximal independent set if

S∪ {v} is not independent for any v ∈ V\S. Figure 2.5 on page 27 shows a maximal
independent set. Detailed information on such sets is provided in Section 2.4.1). The

technical terms will now be explained one by one.

Algorithm 2.1 Self-Stabilizing Maximal Independent Set

Predicates:
inNeighbor(v) ≡ ∃w ∈ N(v) : w.status = IN
waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.status = WAIT ∧ w.id < v.id
inNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.status = IN ∧ w.id < v.id

Functions:
–

Actions:
R1 :: [status = OUT ∧ ¬ inNeighbor(v)]

−→ status := WAIT

R2 :: [status = WAIT ∧ inNeighbor(v)]
−→ status := OUT

R3 :: [status = WAIT ∧ ¬ inNeighbor(v) ∧ ¬waitNeighborWithLowerId(v)]
−→ status := IN

R4 :: [status = IN ∧ inNeighbor(v)]
−→ status := OUT

Definition 1 (State). All nodes v ∈ V maintain a set {var1, var2, . . . , vark}v of

variables, each of them ranging over a fixed domain of values. The state sv of the

node is represented by the values of its variables.

In the example above, the state of a node consists of a single variable status. The
values lie in the range of IN, WAIT and OUT. In Figure 2.2 these values correspond
to the colors black, gray and white. The values IN and OUT indicate whether a

node is part of the maximal independent set or not, WAIT is an intermediate value

that indicates that a node wants to change its status to IN. When Algorithm 2.1

has terminated, all nodes have their status variable set to either IN or OUT. If no
ambiguity arises, the assignment of a value to a variable is sometimes written as an

13

2 SELF-STABILIZATION

assignment to the node, i.e. in Figure 2.2 node v0 has the value WAIT. The states of
all nodes in V represent the state of the distributed system, also called configuration.

Definition 2 (Configuration). A configuration c of the graph G is defined as the n-

tuple of all nodes’ states: c = (sv1 , . . . , svn). The set of all configurations in G is

denoted by CG.

v0

v1

v2

v3

v4

v5

v6

v7

�� Figure 2.2: Configuration of a graph during the execution of Algorithm 2.1. The

colors black, gray and white correspond to the values IN, WAIT and OUT, respec-
tively.

Figure 2.2 shows a configuration of a graph during the execution of Algorithm 2.1.

The nodes v1, v2 and v7 have the value OUT assigned to their status variable, v3 and

v5 (resp. the other nodes) have the value IN (resp. WAIT).
The absence of faults can be defined by a predicate P over the configuration. This

motivates the following definition:

Definition 3 (legitimate). A configuration c is called legitimate with respect to P if c
satisfies P . Hence, a legitimate configuration is free of faults. Let LP ⊆ CG be the

set of all legitimate configurations with respect to a predicate P .

In this case P must evaluate to true if and only if the specified configuration forms
a maximal independent set, i.e. for the configuration shown in Figure 2.2 P is false
whereas P is true for the configuration depicted in Figure 2.5 (page 27). LP contains

all configurations that form an independent set of the graph.

14

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

Rules specify the behavior of the nodes. Note that a node can only update its own

state.

Definition 4 (Rule). A rule (or action) consists of a name, a precondition (or guard)

and a statement. The precondition of a rule is a Boolean predicate defined on the state

of the node itself and its neighbors’ states. It decides whether a node is allowed to

execute the corresponding statement. The statement describes how a node updates its

state.

The notation of a rule is:

Name :: [precondition] −→ statement

Algorithm 2.1 contains four rules that define in which situations a node has to change

the value of its status variable.

Definition 5 (Algorithm). An algorithm is a set of rules. It constitutes the program

executed on the nodes of the distributed system.

Definition 6 (enabled). A rule is called enabled in a configuration c if its precondition

evaluates to true in c. A node is enabled in a configuration if at least one of its rules

is enabled. A rule (resp. node) that is not enabled is called disabled.

If several rules are enabled for a node in a configuration, one rule is nondetermin-

istically chosen for execution. However, algorithms can be designed to guarantee

that at most one rule is enabled per node for any configuration. This can be done by

extending the guards of the rules to include the negation of the other rules’ guards.

Hence, without loss of generalization it is assumed that a node is enabled for at most

one rule in a given configuration.

In the configuration depicted in Figure 2.2 all nodes are enabled, except for nodes

v2 and v7. They are disabled since they have a neighbor (e.g. v5) that is included in

the minimal independent set and they themselves are not. Nodes v4 and v6 are enabled

to execute rule R2 to set their status variable to OUT. The black nodes are neighbors,
and hence, both of them are enabled to leave the independent set (rule R4). Node v0

could set its status to IN via rule R3 and node v1 is enabled to execute rule R1 to set

its status to WAIT. The execution of a rule by a node is called a move.

15

2 SELF-STABILIZATION

Definition 7 (Move). A move is a tuple (s, s′)v, where s (resp. s′) denotes the state of

node v before (resp. after) the execution of the statement of an enabled rule.

If it is clear (or of no relevance) which node executes the move, the subscript will

be omitted. If a certain rule is enabled for a given node, the corresponding move

is called enabled also. An essential property of the system is its synchrony. In

Figure 2.2 the nodes v3 and v5 are both enabled to execute rule R4. If they make a

move simultaneously, both of them set their status variable to OUT since they read

their neighbors’ states at the same time. However, if one of them makes its move

first, the other node becomes disabled since it no longer has a black neighbor. The

synchrony of a distributed system is modeled by a scheduler (or daemon). For a given

configuration the scheduler chooses which nodes make a move simultaneously.

Definition 8 (Scheduler). The scheduler of a distributed system is a function

sched : CG ↪→ 2V , such that sched(c) is a nonempty subset of the nodes in V
that are enabled in configuration c.

The most common schedulers are:

� the central scheduler: At any time, only a single node makes its move, i.e

∀c ∈ CG : |sched(c)| = 1.

� the synchronous scheduler: All enabled nodes make their moves simultaneously.

� the distributed scheduler: Any nonempty subset of the enabled nodes can make

their moves simultaneously.

Although it is easier to prove stabilization for algorithms working under the central

scheduler, the synchronous and the distributed scheduler are more suitable for practical

implementations. The distributed scheduler allows the nodes to operate with different

speed, i.e. not all nodes have to make their move at the same time. Note that the

distributed scheduler subsumes the other two types of schedulers and is the most

general concept. In general, schedulers have no restrictions on their scheduling policy.

However, sometimes it is useful to assume fairness:

Definition 9 (Fairness). A scheduler is called fair if it prevents a node being continu-

ously enabled without making a move. Otherwise, the scheduler is called unfair.

16

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

The results presented in this thesis are valid for the unfair distributed scheduler if not

explicitly stated otherwise.

Self-stabilizing algorithms operate in steps. Intuitively, steps can be seen as time

intervals, such that every node can make at most one move within one step and such

that all nodes make their move simultaneously. This implies that for any step all nodes

read their neighbors’ states at the same time.

Definition 10 (Step). A step is a tuple (c, c′), where c, c′ are configurations, such that

� all nodes that make a move in this step are enabled in configuration c, and

� c′ is the configuration reached after these nodes have made their move simulta-

neously.

When the central scheduler is used, each step consists of the move of a single node only.

Thus, if a step consists of the movem = (s, s′) that transforms configuration c0 into c1

it is also possible to writem = (c0, c1) and with a slight abuse of notationm(c0) = c1.

This notation does not introduce any ambiguity when the central scheduler is used,

since c0 and c1 coincide in all components but one.

Definition 11 (Execution). An execution of an algorithm is a maximal sequence

c0, c1, . . . of configurations such that for each configuration ci the next configuration

ci+1 is obtained from ci by a single step.

With these terms and definitions it is possible to describe the two properties closure

and convergence (cf. Section 2.2.2) more formally, which are used to give a formal

definition of self-stabilization:

Definition 12. An algorithm is self-stabilizing with respect to P if the following two

properties hold:

� Closure property: For all configurations c0, c1 ∈ CG: If (c0, c1) is a step with

c0 ∈ LP , then c1 ∈ LP .

� Convergence property: For every execution c0, c1, . . . there is an integer i such

that ci ∈ LP .

17

2 SELF-STABILIZATION

CG LP

�� Figure 2.3: Closure and convergence

Definition 12 is illustrated in Figure 2.3: The set LP of legitimate configurations

is a subset of CG, the set of all configurations. Any step starting from a legitimate

configuration results in another legitimate configuration. If the initial configuration is

not in LP , then in a finite number of steps a legitimate configuration is reached.
More details and other elaborative introductions to self-stabilization can be found

e.g. in [Dol00], [Tel01], or [Tix09].

2.2.4 Complexity of Self-Stabilizing Algorithms

The complexity of an algorithm is a measure for its maximum resource demand.

Usually this demand depends on the size of the input or, in case of a distributed

algorithm, the number of processors. The considered resources can be time, memory,

or the number of messages sent. The latter does not apply in this thesis due to the use

of the state model (see Section 2.1) [AW04]. Garey and Johnson contributed the most

influential publication on complexity of problems and algorithms [GJ79]. However,

they focus on centralized algorithms. The complexity of distributed algorithms

with respect to the communication model is discussed e.g. in [AW04]. A detailed

introduction to the complexity of self-stabilizing algorithms can be found in [Dol00].

There are several measures for the time complexity of a self-stabilizing algorithm.

Note that these measures do not consider local computation of the nodes. This is

due to the assumption that the time needed for communication greatly exceeds the

time needed for computation, an assumption made for algorithms that consider the

computations to be based on local knowledge only. A detailed discussion on this topic

can be found in [Tel01]. A standard measure is the move complexity.

18

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

Definition 13 (Move Complexity). The (worst-case) move complexity of a self-

stabilizing algorithm denotes the maximum number of individual moves needed to

reach a legitimate configuration irrespective of the initial configuration.

This upper bound is relevant for many practical applications such as wireless systems

with bounded resources. The execution of self-stabilizing algorithms defined for the

state model in a wireless setting requires a transformation. The cached sensornet

transform (CST) proposed by Herman is a widely used transformation technique

[Her04]. It requires that nodes broadcast their state to their neighbors after every

move. Since communication is the main consumer of energy, a reduction of the

number of broadcasts prolongs the lifetime of a network [TW09].

For the second standard measure for time-complexity of a self-stabilizing algorithm,

assume the synchronous scheduler. In this case, in any step all enabled nodes make a

move. The term (asynchronous) rounds tries to extend this idea to match the nature of

the central and the distributed scheduler [Dol00]. Starting from a given configuration

some nodes may be scheduled several times before all enabled nodes have made a

move. Furthermore, since the move of a node can disable other nodes, it does not

make sense to require all nodes that were enabled at the beginning of a round to

make a move until the round is completed. It also suffices when a node is disabled in

between. Note that only for the synchronous scheduler the number of moves per round

is limited to the number of nodes, since a round is a single step under this scheduler.

Definition 14 (Round). A round is a minimal sequence of steps during which any

node that was enabled at the beginning of the round has either made a move or has

become disabled at least once.

Definition 15 (Round Complexity). The (worst-case) round complexity of a self-

stabilizing algorithm denotes the maximum number of rounds needed to reach a

legitimate configuration irrespective of the initial configuration.

Considering rounds allows to make assumptions on the states of all nodes, e.g. after

the first round all nodes have assigned certain values to their variables. The round

complexity further permits to ignore scenarios in which a particular node is continu-

ously enabled but does not make a move. The current round does not end unless the

node either makes a move or the move of one of its neighbors disables it.

19

2 SELF-STABILIZATION

The worst-case number of moves or rounds does not necessarily reflect the time

the algorithm needs to stabilize. The number of moves alone does not provide the

information whether these moves are equally distributed among all nodes or whether

they are performed by a small group of nodes only. Hence, only for the central

scheduler, this number conforms exactly with the worst-case stabilization time. On

the other hand, a round has no fixed limit for the number of moves contained under

the central or the distributed scheduler. Counting the worst-case number of steps

estimates the time an algorithm needs to stabilize best.

Definition 16 (Step Complexity). The (worst-case) step complexity of a self-stabilizing

algorithm denotes the maximum number of steps needed to reach a legitimate configu-

ration irrespective of the initial configuration.

Note that for the central scheduler the step complexity is equivalent to the move

complexity, since this scheduler allows only one move per step. For the synchronous

scheduler the step complexity is equivalent to the round complexity, since under this

scheduler a round consists of exactly one step. For the distributed scheduler the time a

self-stabilizing algorithm needs to reach a legitimate configuration exactly corresponds

to the number of steps in the execution. However, since any execution under the central

scheduler is also valid for the distributed scheduler, its worst-case number of steps

cannot be smaller than the move complexity under the central scheduler. Usually, the

step complexity is merely used for the synchronous scheduler to emphasize that the

rounds are synchronous.

The last complexity measure considered in this thesis refers to the memory re-

quirement of an algorithm. Often, self-stabilizing algorithms run on very restricted

hardware, therefore it is important to use the resources economically.

2.3 Design Methods for Self-Stabilizing

Algorithms

The definition of a legitimate configuration for a given problem is usually described

by several individual properties that have to hold true. In general, a self-stabilizing

algorithm consists of a set of rules that perform a local check whether a precondition

of a rule is valid for the executing node and set the state accordingly, if necessary.

20

