Introduction

Combinatorial optimization is an important tool for solving optimization problems from
industry like vehicle routing, network design or production scheduling. To define such an
optimization problem, data concerning the cost, the constraints on the solutions or the topol-
ogy of the networks are assumed to be known. However, these data can often only be esti-
mated based on imprecise measuring methods or predictions of future events (development
of the stock markets, change of weather conditions, variations in traffic volume). In several
applications, average values from historical data adjusted by some anticipated changes are
used to determine the problem setting.

An attractive approach for dealing with these variations in data is to include different data
sets into the optimization process. Many researchers have selected a scenario approach, where
each scenario represents a reasonable data set. Depending on the considered setting and the
available information, such a set of data sets is equipped with a probability distribution to
reflect the likelihoods of the scenarios.

There are two major trends in dealing with uncertainty given by a scenario set: stochastic
programming and robust optimization. The goal in stochastic programming is to find some
solution that is feasible in almost all considered scenarios and minimizes some stochastic
function like the expected cost. This approach is only applicable if a probability distribution
of the scenario set is known or can be estimated. Minimizing the expected cost is reasonable
if the process is repeated several times and the same solution is chosen in each iteration.
Furthermore, the approach assumes some flexibility in the realization process, since a solution
may turn infeasible, and it assumes reasonable cost in the unlikely worst-case. These conditions
are not satisfied when dealing with high risk situations or with basic services like planning
water and power supply networks. In these settings a robust approach is more appropriate.

Robust optimization provides a high level of security but represents a rather risk-averse atti-
tude. A solution is called robust if it remains feasible under all considered scenarios. The task
in robust optimization is to find a robust solution that minimizes its worst-case cost. The
difficulty in robustness is that feasibility in all realizations is quite demanding and may not
be achieved by any solution. But even if a robust solution exists, it may generate high cost in
many scenarios which is not representative for other solutions. These drawbacks have already
be discussed when robustness was first applied to linear programming by Soyster [92| in 1973.

To address these concerns, Ben-Tal and Nemirovski [12], El Ghaoui et al. [40, 41|, Bertsimas
and Sim [15] and Bienstock [16] introduced for linear programs new types of scenario sets.
They showed in particular that linear programs under their scenario sets remain tractable.
Kouvelis and Yu [78] started to consider robust combinatorial optimization problems with
discrete scenario sets and proved several hardness results. A famous theorem by Bertsimas
and Sim [14] states that for every polynomially solvable 0-1 discrete optimization problem its
robust version with so-called I'-scenarios can also be solved in polynomial time. Note that
all settings for combinatorial optimization problems assume that the values of the objective
function are subject to variations, but that the set of feasible solutions remains unchanged.
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Despite the progress in defining scenario sets, several researchers felt the need to relax the
concept of robustness. Inspired by the idea of a recourse in two-stage stochastic programming,
they defined a two-stage procedure that allows a solution chosen under uncertainty in a first
stage to be modified by previously fixed means as soon as all data are known. As in the
robust setting, the worst-case cost of such a solution is minimized. This idea was introduced
by several groups, e.g., Ben-Tal et al. [11], Dhamdhere et al. [37] or Liebchen et al. [81], under
the names of adaptive robustness, demand robustness or two-stage robustness, and recoverable
robustness, respectively. In this thesis we will call this concept recoverable robustness.

Recoverable robust linear programs have been studied in [11, 81, 95]. One drawback of this
setting is the increase in complexity, since most of these problems are strongly NP-hard.
From a practical point of view, recoverable robustness turns out to be an important tool
for modeling real world problems gaining valuable insights into the scope of applicability of
optimization. For example, its application to several railway optimization problems is analyzed
in |25, 26, 30, 81]. In terms of combinatorial optimization, the main focus of research activities
focused on scenario sets modeling failures of the underlying topology or uncertainties on the
side constraints like the demands (e.g., [37, 44, 55, 73]). The objective function in these cases
is assumed to be fixed.

This thesis focuses on two aspects of recoverable robustness. The first one is motivated by a
theoretical interest:

e How to define useful recoverable robust combinatorial optimization problems for scenario
sets modeling uncertainties in the objective function?

e What kind of changes in respect to complexity can be observed compared to robust
models?

e Which combinatorial structures or properties can be detected within the recoverable
robust model?

The second aspect is a practical one and emphasizes on how a recoverable robust approach
can be adapted to practical problems, e.g., what kind of scenario sets to consider and how to
define the recovery actions.

Chapter 1 contains a short introduction to the concept of robustness, important results in this
area and their extension to recoverable robustness. The following three Chapters 2, 3 and 4
are dedicated to theoretical issues and Chapters 5 and 6 to more practical applications. In the
Appendices A and B, we investigate two combinatorial subproblems of the recoverable robust
models introduced in Chapters 2, 3 and 4, in order to give a deeper understanding of the
results obtained there. Apart from the definition of different scenario types in Chapter 1, all
chapters are self-contained and thus can be read independently of each other. In the remainder
of this introduction, we give a short overview of each chapter.

Chapter 1: Dealing with Uncertainties in a Robust Way This chapter contains the
history of robustness and its extension to recoverable robustness with the main results in
linear programming and combinatorial optimization. In particular we give the definition of
three different types of scenario sets, which we will investigate throughout this thesis: the so-
called discrete scenario sets, the interval scenario sets and the I'-scenario sets. Note that we
mainly consider uncertainties occurring in the cost function of a given optimization problem.

The considered types of scenario sets differ in the way they are modeled in the input, i.e.,
whether they are defined explicitly or implicitly, and by further restrictions on the values of
the cost functions. In a discrete scenario set each scenario and its integer cost function is
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explicitly given. Interval scenario sets consist of all scenarios that determine a cost function
whose values lie in a given cost interval defined by lower and upper cost bounds. For some
integer I', I'-scenario sets are modifications of interval scenario sets. In contrast to interval
scenarios, a ['-scenario may change only I' cost values from the lower bound, in the worst-case
to the corresponding upper bound.

Chapter 2: k-Distance Recoverable Robustness This chapter covers a recoverable robust
approach to combinatorial optimization which is probably the most natural: the k-distance
recoverable robustness approach. Let us consider a linear combinatorial minimization (LCMin)
problem such as the shortest path problem, and a set of scenarios, each defining a cost function,
e.g., in the shortest path setting different traveling times. In the k-distance recoverable robust
model, a solution is chosen in the first stage, e.g., a simple path. As soon as the scenario is
revealed, i.e., once the exact data for the cost function is known, we are allowed to choose a
solution that differs just a “little” from the first one. In the shortest path setting one can think
of a path using small detours compared to the originally chosen path. In general the difference
is measured by the number of new elements contained in the second solution. This number
is bounded by some integer k, also called recovery parameter. The goal in the k-distance
recoverable robust setting is to find a solution in the first stage with minimum total cost. This
cost is composed of the so-called first-stage cost and the maximum cost occurring in a scenario
for the chosen second path.

We investigate the k-distance recoverable robust version of several well-known combinatorial
optimization problems, e.g., the shortest path problem, the minimum spanning tree problem
and the minimum perfect matching problem, in combination with the three basic scenario
sets defined above, namely discrete scenario sets, interval scenario sets and I'-scenario sets.
For discrete scenarios we start by analyzing the k-Dist-RR version of a quite simple LCMin
problem, the weighted disjoint hitting set (WDHS) problem. This problem represents a special
case of the deterministic shortest path problem, the minimum (s, ¢)-cut problem, the minimum
perfect matching problem and the minimum spanning tree problem. For two scenarios we show
that the k-distance recoverable robust (k-Dist-RR) version of this WDHS problem is weakly
NP-hard. We also present a pseudo-polynomial algorithm with a run-time depending on a
constant number of scenarios and the values of the scenario cost functions. If the number
of scenarios is not constant, the problem turns out to be strongly NP-hard. In a special
case, a lower bound of 1.5 (later improved independently to a bound of 2 by Kasperski and
Zielinski |70]) on the best possible approximation factor is achieved, unless P = NP. The
hardness results can easily be transferred to all the problems of which the WDHS problem is
a subproblem.

Considering interval scenarios, where the cost function of each scenario is bounded by box-
constraints, the complexity status varies between not approximable and solvable in polynomial
time. On one hand, the k-Dist-RR shortest path problem is strongly NP-hard and cannot be
approximated, unless P = NP. This is in stark contrast to the case where a not necessarily
simple (s, t)-path needs to be chosen in a first stage, and the recovery parameter k is a constant,
since then the problem is tractable. Also the k-Dist-RR version of the minimum weight basis
problem for matroids is solvable in polynomial time for constant k. For the WDHS problem,
it can be solved efficiently even if k£ is not constant but part of the input.

Finally, we analyze ['-scenarios. By a reduction from the closely related max-scenario problem
considered in Appendix A, we show that the k-Dist-RR shortest path problem and the k-Dist-
RR minimum (s, t)-cut problem become strongly NP-hard.
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Chapter 3: Rent Recoverable Robustness Rent recoverable robustness focuses on situ-
ations where a choice of an element in the first stage lowers the cost to actually purchase
this element in the second stage. The idea is similar to option dealing and the right of first
refusal. Let U be a set of elements and F be a set of feasible solutions, where the goal is to
possess a cheap feasible solution in the second stage. In the first stage some elements can be
rented. We assume that the rental cost is a fraction of the cost for the elements revealed in
the second stage. If we rent an element v € U, in scenario S we need to pay the rent cost of
a-c®(u), where ¢® : U — N is a cost function defined by S and 0 < « < 1 is a previously fixed
rental factor. To purchase the element in the second stage we just need to pay the remaining
cost (1—a)c®(u). On the other hand, if we did not rent the element before, we have to pay the
original cost and additional inflation cost, i.e., (1 + 8)c®(u) for some inflation factor 8 > 0.
To sum up, an element u may produce cost 0 or ac®(u) or ¢®(u) or (1 + 8)c%(u). The task
in a rent recoverable robust problem is to determine a set of elements for rent, such that the
maximum cost for purchasing a solution over all scenarios is minimized. In contrast to the
k-Dist-recoverable robust model, a first-stage solution does not limit the set of solutions we
can choose from in the second stage.

We show that the rent recoverable robust version of all combinatorial optimization problems
that contain the WDHS problem, is weakly NP-hard for two scenarios. If the number of
scenarios is not constant, the same problems are not approximable with a factor better than 2,
unless P = NP. Considering interval scenarios, a rent recoverable robust problem is solvable
in polynomial time if the underlying combinatorial optimization problem is in P. In the case of
['-scenarios the complexity of the rent recoverable robust problem depends on the complexity
of the max-scenario problem, i.e., if the max-scenario problem is strongly NP-hard and some
technical details are fulfilled then the rent recoverable robust version is also strongly NP-hard.

In the last section we provide an approximation algorithm, which depends on a robust solution.
If the robust solution is a y-approximation of the corresponding robust problem, we obtain a
min{~y + 1 + 3, I }-approximation for the rent recoverable robust version with a given rental
factor @ and an inflation factor 8. In general, such relations between robust and recoverable
robust solutions cannot be achieved, since a robust solution may produce arbitrarily high total
cost like it is the case for k-Dist-recoverable robust problems.

Chapter 4: Exact Subset Recoverable Robustness In network design the words robust-
ness and stability are often used interchangeably. In that context a network is called ro-
bust /stable if its task is not influenced by intentional or random attacks. For example, in
telecommunication networks the demand should remain routable if certain links fail. In gen-
eral, a network is more robust if it contains redundant links. On the other hand, maintaining
such a network is rather costly. In order to reduce the cost, one is interested in abandoning as
many links as possible without losing stability. Yet, this approach does not take into account
the needs of the customers. A customer is generally not only interested that his requests are
routed but also that they are routed as fast as possible.

Exact subset recoverable robustness concentrates on this second requirement. Assuming un-
certainties given in the cost function, e.g., in the routing times, the task is to find a subnetwork
with minimum size guaranteeing that in every scenario the considered request is routed in the
subnetwork as fast as in the original network according to the realized cost function. This
problem can be easily extended to all combinatorial optimization problems and interpreted as
finding a small set of elements such that this set always contains an optimal solution w.r.t. the
original instance.
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Starting again with discrete scenario sets, we show strong NP-hardness for the exact subset
recoverable robust version of the minimum spanning tree problem, the minimum shortest path
problem and the minimum perfect matching problem. The key difficulty lies in the subproblem
of choosing one element out of a given set with minimum cost. This problem is a special case of
the weighted disjoint hitting set problem, which was investigated already in different chapters.

For interval scenario sets the problem becomes more interesting. We develop a general criterion
to decide in which case a given element needs to be part of any feasible solution. If a considered
linear combinatorial optimization problem is in P, we can use this criterion to show that its
exact subset recoverable robust version is in coNP. Furthermore, we use the criterion in two
directions: on the one hand, we prove that the exact subset recoverable robust version of the
shortest path problem and the minimum (s,¢)-cut problem are not approximable within a
factor of |A|~%) on a directed graph G = (V, A) for any ¢ > 0, unless P = NP. On the other
hand, we derive an algorithm for solving the exact subset recoverable robust minimum weight
basis problem on matroids.

The case of I'-scenarios is again closely related to the max-scenario problem, and thus it
follows that the exact subset recoverable robust versions of the shortest path problem and the
minimum (s, ¢)-cut problem are strongly NP-hard. But even for matroids the problem turns
out to be more difficult. The exact subset recoverable robust minimum spanning tree problem
contains as a subproblem the k-connected minimum subgraph problem and can therefore not
be solved in polynomial time, unless P = NP. Finally, we introduce an approximation scheme
for interval and I'-scenarios. This chapter is based on joint work with Rico Zenklusen. In [22]
results on the exact subset recoverable robust shortest path problem are published.

Chapter 5: A Recoverable Robust Knapsack Problem An important task in telecommu-
nication is to assign bandwidth to different customers, maximizing the profit for the company.
In many cases the demand of the customers varies, e.g., the source, the destination and the
traffic volume. Hence, not enough capacity may be available at the point of realization, al-
though service was granted beforehand. To obtain a trade-off between the loss of benefit due
to unused resources and the loss in reputation, we allow in our model violations of up to &
service promises and new service offers for up to ¢ new requests while maximizing the profit.
Applying this approach to a single link of a telecommunication network leads to a recoverable
robust version of the knapsack problem. Uncertainties are given in the profit function and in
the weight function. As recovery action, k items of the first-stage solution may be deleted and
¢ items may be added, as soon as a scenario reveals its profits and the weights.

Our main focus in this chapter is to obtain similar results as for the classical (robust) knapsack
problem. We start with an investigation of the complexity status for discrete scenario sets.
As in the robust and deterministic case, the (k,f)-recoverable robust knapsack ((k,¢)-rrKP)
problem is weakly NP-hard and can be solved in pseudo-polynomial time via a dynamic
program if the number of scenarios is constant. If this is not the case, the problem is strongly
NP-hard and in some cases even not approximable, unless P = NP. occur to

In addition to its complexity status, we are interested in obtaining strongly polyhedral de-
scriptions for this problem. We thus generalize the well-known concept of covers to gain valid
inequalities for the recoverable robust knapsack polytope. Besides the canonical extension of
covers we introduce a second kind of extension exploiting the scenario-based problem struc-
ture and producing stronger valid inequalities. Furthermore, we present two computational
studies to investigate the influence of parameters k£ and ¢ to the objective and evaluate the
effectiveness of our new class of valid inequalities.
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The (k, ¢)-rrKP problem with interval scenarios is a special case of the setting with just one
discrete scenario. For I'-scenarios this is not the case. We start by investigating the so-called
maximum weight set problem and introduce a combinatorial algorithm for computing for a
given set of items the scenario that induces the maximum weight on this set after the recovery
is applied. Using this result we introduce an IP formulation for the (k, ¢)-rrKP problem with
['-scenarios and no scenario profit whose size is polynomial in the size of the knapsack instance.
Note that the set of I'-scenarios contains an exponential number of different scenarios.

As for discrete scenarios, we adapt cover inequalities and strengthen previous formulations
introduced for the robust knapsack polytope by Klopfenstein and Nace [76]. Furthermore,
we give an optimal pseudo-polynomial algorithm for solving the corresponding separation
problem. This chapter is joint work with Arie Koster and Manuel Kutschka [23].

Chapter 6: Recoverable Robust Train Classification Train classification is an important
task in railway optimization, in which a set of given freight trains is sorted to form new
trains. In general these trains arrive according to a previously known order at the so-called
classification yard, where the cars are decoupled such that they can be sorted. The sorting
is performed by moving the cars over a hump, collecting them at some receiving track and
pulling them out again if necessary, until the desired train is formed. Since trains are often
delayed, the expected order of cars changes and a previously determined sorting schedule
becomes infeasible. Traditional classification methods deal with this problem by assuming a
worst-case scenario, i.e., that all cars arrive in reversed order, with the drawback of using more
sorting steps than necessary.

In our recoverable robust model, we assume that we can interfere the sorting process after an
offset of p sorting steps to add k& new sorting steps. But, we expect that a recoverable robust
schedule sorts the incoming trains into the desired outgoing train if no delay occurs. In the
case of disturbances, feasibility of the schedule is reobtained by using the described recovery
means. The parameters p and k£ model the trade-off between robustness and rescheduling. For
large p and small k& almost no changes happen to a schedule fixed in the first stage, for small
p and large £ many changes are possible.

We start by introducing a generic algorithm for computing a recoverable robust train classifi-
cation schedule. For the special scenario set in which each scenario delays up to j trains, this
algorithm can be implemented in polynomial time. Yet, in general a special NP-hard sub-
problem needs to be solved, which also induces NP-hardness on the recoverable robust train
classification problem for £ > 1. In experiments on real-world traffic data we further explore
the trade-off underlining that our algorithm saves sorting steps in comparison to traditional
methods even for small recovery actions. The results in this chapter are joint work with Jens
Maue and partly published in [24].

Appendix A: Max-Scenario Problems The max-scenario problem is an important sub-
problem of several recoverable robust settings. Given a combinatorial optimization problem
and a set of scenarios, the task of this problem is to find a scenario that maximizes the
minimum cost of a feasible solution. For discrete scenario sets and interval scenario sets the
problem is easy to solve. However, for I'-scenarios we show that the max-scenario problem
for the shortest path problem and the minimum (s, ¢)-cut problem become strongly NP-hard.
Using this result, we can show in several recoverable robust settings that recoverable robust
versions of these two problems are at least strongly NP-hard.
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Appendix B: Cardinality Constrained Minimum (s,t)-Cut Problem The upper bounded
cardinality constrained minimum (s, ¢)-cut problem asks for a minimum (s, ¢)-cut in a graph
with bounded cardinality such that its cost is minimized. To the best of our knowledge the
complexity status of this problem was open, e.g., stated in [21]. We show that the problem
is strongly NP-hard. As a consequence, the total cost for an (s,t)-cut cannot be computed
in polynomial time in the k-distance recoverable robust model. This result is joint work with
Rico Zenklusen.



