
1. Introduction

Mixed Models

The analysis of longitudinal data is a popular task in statistics (Diggle et al., 2002; Fitz-
maurice et al., 2004). This kind of data is given when statistical units like individuals are
examined at several observation times with regard to some variables of interest. When
regression models are applied for investigating the influence of different covariates on a
response variable, one has to incorporate the dependence structure in repeated measure-
ments that arises from the fact that measurements belonging to the same individual are
typically correlated. This can either be achieved by considering mixed models also known
as random effects models (Laird and Ware, 1982) or by using the generalized estimation
equation approach proposed by Liang and Zeger (1986). While in the framework of gen-
eralized estimation equations the response values are modeled marginally by using only
population-specific effects, mixed models contain population-specific fixed effects as well
as individual-specific random effects and focus on the conditional distribution of each re-
sponse value conditional on the corresponding random effect. Mixed models, which were
introduced by Fisher (1918), assign each subject i its own random effect bi. For longitudi-
nal data random effects facilitate the modeling of individual deviations from the population
trend of the response variable over time. In contrast to the fixed effects, for the random
effects a distribution assumption is specified that is typically given by a normal distribu-
tion. A more flexible approach has been proposed by Verbeke and Lesaffre (1996). They
consider a mixture of normal distributions as random effects distribution:

bi ∼
N∑

h=1

πh N(μh,D), i = 1, . . . , n.

This offers a possibility for clustering individuals due to their time-dependent trend curves
of the response variable: If the number of clusters N is smaller than the number of subjects
n, several subjects share the same cluster center μh and form a cluster. The covariance
matrix D indicates the dispersion of the random effects around their cluster centers. How-
ever, this raises the question how to choose the number of clusters. In this dissertation,
two penalization approaches are proposed to determine the number of clusters in a data
driven way. One is based on the fusion of cluster centers: If the differences of cluster
centers are penalized by an appropriate penalty term, some differences are shrunk to zero.
Consequently some clusters are fused and the effective number of clusters is reduced. An
alternative possibility consists in the penalization of the amounts of the weights πh. If
some weights are shrunk to zero, the corresponding clusters drop out.
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Discussion of Penalization Ideas

In regression models regularization approaches are widely used that aim at penalization
of the fixed effects of predictors on a response variable. The fundamental papers of Hoerl
and Kennard (1970) and Tibshirani (1996) introduced the penalized regression techniques
ridge respectively lasso based on a L2-norm respectively L1-norm penalty. The latter one
is particulary characterized by the possibility to shrink parameters and to set some of
them to zero if the corresponding covariates have no impact on the response variable. In
the following, it will be shortly discussed in which extent the lasso method could be used
for the two penalization goals mentioned in the previous section: On the one hand, we
want to shrink differences of cluster centers to zero. However, for fusion of parameters
the fused lasso idea of Tibshirani et al. (2005) is much more helpful than the direct lasso
approach. Furthermore, for incorporating multivariate random effects the fusion concept
has to be combined with the group lasso approach by Yuan and Lin (2006), which also is
an extension of the lasso idea. On the other hand, at first sight the lasso approach seems to
be appropriate to shrink weights to zero. But note that probabilities with the range [0, 1]
and the restriction that the sum of all probabilities is one cannot be handled in the same
way as usual regression coefficients. Thus, we prefer a completely different approach that
is based on a Dirichlet process. In this approach, all restrictions are fulfilled automatically
and we get rather a shift than a penalization of the weights: High weights become higher
and small weights become nearly zero.

Guideline through the Thesis

The main part of this dissertation consists of four chapters, which show different pos-
sibilities of clustering in linear and additive mixed models. In Chapters 3 and 4 the
two different methods for penalizing the number of clusters introduced in the previous
sections are elaborated and applied within the framework of linear mixed models.
An Expectation-Maximization (EM) algorithm is used for inference in each case. A
comparison of both methods with regard to simulation results and applications can be
found in Sections 4.3.3 and 4.4. Chapters 5 and 6 deal with additive mixed models using
an approximate Dirichlet process mixture (DPM) as random effects distribution. While
in Chapter 5 the model is fitted by using Markov chain Monte Carlo (MCMC) methods,
in Chapter 6 the EM algorithm of Chapter 4 is extended to additive mixed models and
compared to the MCMC approach of Chapter 5. Chapter 2 takes a special role in the
thesis. Here, the theoretical concepts of Dirichlet processes are explained for a better
understanding of the methods in chapters using Dirichlet processes. Nevertheless, the
single chapters can be read independently of each other. Just for background knowledge
or comparisons to other approaches cross references are helpful. Short summaries of the
chapters are given in the following:
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Chapter 2: Dirichlet Processes

In this chapter we want to depict the idea as well as the highly praised cluster
property of the Dirichlet process. The stick breaking representation of the Dirichlet
process and the concept of DPMs play a central role in thesis and are also outlined
in this chapter.

Chapter 3: Linear Mixed Models with a Group Fused Lasso Penalty

A method is proposed that aims at identifying clusters of individuals that show
similar patterns when observed repeatedly. We consider linear mixed models, which
are widely used for the modeling of longitudinal data. In contrast to the classical
assumption of a normal distribution for the random effects a finite mixture of normal
distributions is assumed. Typically, the number of mixture components is unknown
and has to be chosen, ideally by data driven tools. For this purpose an EM algorithm-
based approach is considered, that uses a penalized normal mixture as random effects
distribution. The penalty term shrinks the pairwise distances of cluster centers based
on the group lasso and the fused lasso method with the effect that individuals with
similar time trends are merged into the same cluster. The strength of regularization
is determined by one penalization parameter. For finding the optimal penalization
parameter, a new model choice criterion is proposed. The usefulness of this method
is illustrated in three applications and in a simulation study.

Chapter 4: Linear Mixed Models with DPMs using EM Algorithm

For the same goal as in the previous chapter an alternative clustering approach is
considered. Note that in linear mixed models the assumption of normally distributed
random effects is often inappropriate and unnecessary restrictive. The proposed
approximate DPM assumes a hierarchical Gaussian mixture that is based on the
truncated version of the stick breaking presentation of the Dirichlet process. In
addition to the weakening of distributional assumptions, the specification allows to
identify clusters of observations with a similar random effects structure. An EM
algorithm is given, that solves the estimation problem and that, in certain respects,
may exhibit advantages over Markov chain Monte Carlo approaches when modeling
with Dirichlet processes. The method is evaluated in a simulation study and applied
to the dynamics of unemployment in Germany as well as lung function growth data.

Chapter 5: Additive Mixed Models with DPMs using MCMC methods

When the population time trend is nonlinear, the methods of Chapters 3 and 4 cannot
be used, and more flexible approaches like additive mixed models are necessary.
For the handling of nonlinearity and heterogeneity in the data, a combination of
flexible time trends and individual-specific random effects is required. We propose
a fully Bayesian approach based on MCMC simulation techniques that allows for
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the semiparametric specification of both the trend function and the random effects
distribution. Bayesian penalized splines (P-splines) are considered for the former
while a DPM specification allows for an adaptive amount of deviations from normality
for the latter. The advantages of such DPM prior structures for random effects are
investigated in terms of a simulation study to improve understanding of the model
specification before analyzing childhood obesity data.

Chapter 6: Additive Mixed Models with DPMs using EM Algorithm

As in the previous chapter, additive mixed models with a DPM as random effects
distribution are considered, that are based on the truncated version of the stick
breaking presentation of the Dirichlet process. In contrast to Chapter 5 an EM
algorithm is given, that solves the estimation problem and that exhibits advantages
over MCMC approaches, which are typically used when modeling with Dirichlet
processes. For handling the trend curve the mixed model representation of P-splines
is used. The method is evaluated in a simulation study and applied to theophylline
data and childhood obesity data.

An important technical fact concerning regression models in general should be mentioned
at this stage. Regression models are among other things specified by an assumption for
the conditional distribution of the response variable given all covariates. Formally, we
abstain from conditioning on the covariates in the model equations of this thesis for a
clearer notation. Nevertheless, this condition is implied.

Publications

As research is a dynamic process, parts of this dissertation have already been published
in peer reviewed journals or as technical reports and have been done in cooperation with
supervising coauthors. Parts of this thesis can be found in

• Heinzl, F. and G. Tutz (2012). Clustering in linear mixed models with a group
fused lasso penalty. Technical Report 123, Ludwig-Maximilians-University Munich.
(resubmitted). (Chapter 3)

• Heinzl, F. and G. Tutz (2013). Clustering in linear mixed models with approxi-
mate Dirichlet process mixtures using EM algorithm. Statistical Modelling 13, 41-67.
(Chapter 4)

• Heinzl, F., L. Fahrmeir, and T. Kneib (2012). Additive mixed models with Dirichlet
process mixture and P-spline priors. Advances in Statistical Analysis 96, 47–68.
(Chapter 5)

See the corresponding chapters for more details.
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Software

For most of the computations in this thesis the programming language C++ (Stroustrup,
1997) and the statistical software R (R Development Core Team, 2012) were used. All new
proposed methods are implemented in C++ for a computing time as low as possible. These
C++ functions make use of the libraries ASA047 (Burkhardt, 2008) and Newmat (Davies,
2008) and are embedded in R wrapper functions, that are made available by the self-
implemented R add-on package clustmixed (Heinzl, 2012), which will presumably be made
publicly accessible via CRAN (see http://www.r-project.org). A test version of the
package can be downloaded from http://www.statistik.lmu.de/~heinzl/research.

html. This package imports the packages Matrix (Bates and Maechler, 2012), lme4 (Bates
et al., 2012), splines (Bates and Venables, 2011), ellipse (Murdoch and Chow, 2012),
and coda (Plummer et al., 2012). For comparison to other approaches in the simulation
studies the R package lme4 of Bates et al. (2012) and the software BayesX (Belitz et al.,
2012) were used. More information can be found in the corresponding sections.


