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Abstract: In this paper we give a brief review of compressive sensing (CS) applied to
radar. Though CS theory has been introduced only a few years ago (in 2006, see e. g. [1]),
it today manifests as a kind of revolution in signal processing and sensor systems. We will
discuss some properties of CS radar and present a few examples. It is also a concern of
the author to point to some limitations and shortcomings if CS is ’blindly’ applied with
great enthusiasm to any radar problem. The time has come to deliberate when CS will be
an advantage and when ’oldfashioned’ methods should better be applied.

1. Introduction

Today sensor-systems like radar are based on digital signal processing to a growing degree. The

analogue-to-digital converter moves up more and more to the analogue frontend. The sampling

rate in general still is based on the sampling theorems developed in the 1920𝑡ℎ and 1930𝑡ℎ by

Harry Nyquist, Vladimir Aleksandrovich Kotelnikow, and other ’patriarchs’ of sampling theory.

For modern broadband systems the adherence to Nyquist sampling leads to a tremendous flood

of data, and a large number of single elements for a receiving array. Many attempts have been

undertaken to reduce this data flood as predecessors of compressive sensing (CS). Nevertheless,

for the first time the latter has presented a round theory for sub-Nyquist sampling.

2. Basic ideas of compressive sensing

In the 21𝑡ℎ century a new type of sampling theorems has been developed, summarized under the

term ’compressed sensing’. The class of admitted signals is restricted to sparse or compressible
signals. In the scope of our paper the word ’signal’ often will be replaced by scene, i.e. that what
we want to observe, image or reconstruct. Experience shows that most scenes in our environ-

ment are more or less compressible or even sparse. It is evident that in everyday life compression

techniques often come across, for photos, videos or music showing the compressibility of real

life signals. The same is true for many radar applications.

The new theory of CS is well founded on a solid mathematical basis. It joins the description

of sparse or compressible scenes with sparse sensing techniques, contributes algorithms for

reconstruction and presents mighty, well proven theorems. It provides a new glance at the world

of signal processing and sensor techniques. The number of papers on CS (and CS applied to
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Figure 1: Left: Example for reconstructions of a simulated scene with scatterers at the grid points. Top left: re-
construction with matched filter. Bottom left: reconstruction with �1-minimization. The markers indicate the true
values. 𝑁 = 500,𝑀 = 100, S = 5, noise = -30dB, partial Fourier matrix. Right: Example for reconstruction
of a simulated scene with points between the grids. The positions are uniformly randomly chosen. Top right: re-
construction with matched filter. Bottom right: reconstruction with �1-minimization. The markers indicate the true
values. The parameters are the same as before.

radar) is exploding nearly exponentially. But still there are only a few papers dealing with real

world radar data.

Compressive sensing techniques generally deal incomplete linear equation systems of the type

y = Ax (1)

where the 𝑁 -dimensional coefficient vector x describes the scene, the𝑀 -dimensional vector y

collects the measurements obtained by a linear sensor andA is an𝑀 ×𝑁 matrix - the sensing
matrix - characterizing how the coefficient vector is mapped to the measurements. The vectors

and matrices may be real or complex valued. Compressive sensing assumes that 𝑀 < 𝑁 ,

hindering that Eq. 1 can simply be inverted to reconstruct x from the measurements. A vector

x is called S-sparse if at most S of its coefficients are unequal to zero, and compressible if

∥x − x(S)∥ decreases quickly to zero with growing S, when x(S) denotes the best S-sparse

approximation of x.

There is a variety of algorithms aiming to reconstruct x from the deterministic measurements

y = Ax or the noisy measurements y = Ax + n under the assumption that x is sparse. Well

known are the Basis Pursuit, minimizing the �1-norm ∥x∥1 subject to y = Ax, the Basis Pursuit
Denoising [2] minimizing ∥x∥1 subject to ∥y−Ax∥2 ≤ 𝜎, or equivalently: ∥x∥1+𝜆∥y−Ax∥2,
the Orthogonal Matching Pursuit (OMP)[3] and the Compressive Sampling Matched Pursuit
(CoSaMP) [4]. For the mode of operation of these algorithms, the reader is referred to literature.

It has been shown that under certain conditions on the sensing matrix exact (for the noise-free

case) or robust (for the noisy case) reconstruction is guaranteed, if the number𝑀 of measure-

ments is larger or equal to an expression depending on𝑁 , S and a quantity describing a specific
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property of the sensing matrix. One of these measures is the Restricted Isometry Constant given
by the minimum number 𝛿 with (1− 𝛿)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + 𝛿)∥x∥22 for all S-sparse vectors
x, assuring that measurements Ax and Ax′ are different, if only the S-sparse vectors x and x′

are sufficiently separated. Since this Restricted Isometry Property (RIP) is difficult to proof for

a concrete matrix, a theory has been developed regarding classes of statistical sensing matrices,

showing that e.g. RIP is fulfilled with a probability close to 1. For instance it was shown that for

Gaussian or Rademacher random matrices will have the (S, 𝛿)-RIP with with high probability,

if𝑀 = O
(

𝑆 log 𝑁
S

𝛿2

)
. For one type of statistical sensing matrices generated by selecting𝑀 rows

of the complete 𝑁 ×𝑁 Fourier matrix by random, some examples are presented in this paper.

3. Radar applications of CS

There are many papers about application of CS to various radar tasks. The most elementary

task is pulse compression, treated in a large number of papers, where sparse sampling can be

applied in the fast time domain as well as in the frequency domain. An efficient method is to

transmit a set of frequencies instantaneously [5, 6]. The optimization of the waveforms for CS

is regarded e.g. in [7, 8], orthogonal frequency division multiplexing (OFDM) waveforms in

[9]. Aerospace multi-channel MTI is an interesting situation where the space of scene points is

extended by the dimension ’radial velocity’. The clutter returns gather at the subspace 𝑣 = 0

while moving targets are represented by sparse points in the volume [10].

A great attention has been directed to multiple-input/multiple-output (MIMO) radar systems

[11, 12]. This situation well fitted to CS reconstruction, since the signals are related to all Tx/Rx

pairs which in general lead to a non-uniform thinned sampling in range and angles. Passive
coherent location (PCL) is a special case of a MIMO radar where the waveforms and the

positions of the transmitters cannot be influenced by the user [13],[14].

The application of CS to Synthetic Aperture Radar (SAR) [15, 16] may be problematic, first be-

cause of the possibly not given sparsity of the reflectivity, and secondly because of the tremen-

dous numerical effort needed if larger images shall be processed. On the other hand, CS applied

to SAR tomography is really a great example for a reasonable CS use [17, 18, 19]. While the

SAR images for different pathes of an earth observation satellite are conventionally generated

in range and azimuth, the reflectivity in the third dimension - here: the elevation angle - is

reconstructed via CS. Since normally in one range-azimuth pixel only one elevation angle is

occupied by scatterers, in the case of layover also reflections from two or more elevation angles

can be present. The scene is naturally sparse in the third dimension. The application of CS to

ISAR imaging [20, 21] is promising, especially since the number of pixels can be limited and

the objects often show sparse reflections.

Many attempts have also been undertaken to process ultra-wide-band (UWB) radar data by CS
algorithms, often in the application to through-the-wall radar [22, 23, 22] and ground penetrat-
ing radar [24, 25, 26]. The latter is particularly interesting because of the unknown permittivity
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Definitely radar engineers are interested not only in the probability of a perfect reconstruction,

but also in the probability distribution of the reconstructed values, optimum test statistics to be

applied to them and the probabilities of false alarm and detection. Many of these questions are

answered in [28, 29, 30].

4. Radar scenes, sparsity and measurements
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Figure 2: Left: Reconstruction quality of three methods as functions of the sparsity S, measured as the quotient
between the �2-norm of the deviation between scene and reconstructed scene and the �2-norm of the scene. The
points are single simulation results and the lines connect the medians for the respective simulations. The lowest
curve relates to the noisy basis pursuit, the middle curve to the energy-minimization and the upper curve to matched
filtering. 𝑁 = 500,𝑀 = 100, noise = -30dB, partial Fourier matrix. Right: Reconstruction quality measured as
the correlation coefficient between the scene and the reconstructed scene. The upper curve relates to the noisy
basis pursuit, the lower curve to matched filter reconstruction, which produces in this case the same values as the
energy-minimization.

To explore a scene with a radar sensor, in general we want to get information about the re-

flectivity ρ(ω) over a set ω ∈ Ω of scene points which may be geometrical positions or also

points in a higher dimensional space including velocities, polarizations and so on. To get the

information, radar parameters ξ (frequencies, antenna positions, platform position, ...) are var-

ied and measurements are taken for each used ξ [5]. To process the data, a signal model 𝑠(ξ;ω)

is needed describing the expected signal for a scatterer with normalized reflectivity at ω if the

radar parameter ξ is used. To apply CS we need to discretize the scene points ω1, . . . , ω𝑁 as

well as the measuring parameters ξ1, . . . , ξ𝑀 leading to an 𝑁 -dimensional reflectivity vector

ρ = (ρ(ω1), . . . , ρ(ω𝑁))
𝑡
, a measurement vector y = (𝑦(ξ1), . . . , 𝑦(ξ𝑁))

𝑡
and an𝑀 ×𝑁 model

signal matrix S, S𝑚𝑛 = 𝑠 (ξ𝑚;ω𝑛).

If the radar sensor and the reflection mechanisms can be assumed to be linear, the mapping

between the reflectivity and the noise-less measurements are given by y = Sρ and the noisy

measurements by y = Sρ+n where n is a realization of the random vectorN. The reflectivity
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Figure 3: Simulation of the imaging of three cutting lines. Left top: the original scene, scaled in resolution cells.
Right top: FFT image without window, not oversampled. Left bottom: Hamming-windowed FFT with an oversam-
pling factor of 4 in both directions. Right bottom: CS reconstruction with the same zoom factor. Resolution cells
𝑥-direction = 30, Resolution cells 𝑦-direction = 40, zoom = 4× 4, 𝑁 = 19200, 𝑀 = 1200, signal-to-noise ratio
of the strongest scatterer: 33 dB. Dynamic of the images: 30 dB.

ρmay be expressed by a complete system of basis vectors b1, . . . ,b𝑁 by ρ =
∑𝑁

𝑛=1 𝑥𝑛b𝑛, or in

matrix notation ρ = BxwhereB is the matrix composed of the column vectors b𝑛. Henceforth,

the scene is called S-sparse if a representation basis B can be found for which the coefficient

vector x is S-sparse.

Now the measuring equation can be written as y = Sρ = SBx = Ax with A = SB and we

are back at the original sparse reconstruction problem. In most of the cases, we are looking for

’spiky’ reflectivities, i.e. ρ itself is sparse, the identity representation basis B = I can be used,

and x is identical to ρ.

The collection of the column vectors ofA is called dictionary, since to each of the possible po-
sitions in the vector x there corresponds a description, namely the corresponding column vector

of A. A dictionary can be extended by adding scene points related to different properties, for

instance reflectivity characteristics of the scatterers, building a broader base for classification.

_____________________________________________________________________14th International Radar Symposium IRS 2013 7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4.1. Example: range profile reconstruction

As a leading example we regard a radar illuminating an object with harmonic waves with wave

numbers 𝑘 = 2𝜋/𝜆 where 𝜆 is the wave length. A scatterer at range 𝑟 with normalized re-

flectivity will lead to the receive signal in baseband 𝑠(𝑘; 𝑟) = exp{−𝑗2𝑘𝑟}. Obviously, in this

case the scene points ω can be identified with the range values 𝑟 and the measuring param-

eters ξ with the wave number 𝑘. Introducing a grid of range values 𝑟1, . . . , 𝑟𝑁 and a set of

wavenumbers 𝑘1, . . . , 𝑘𝑁 , the model signal matrix results in S = (𝑠(𝑘𝑚; 𝑟𝑛))𝑚=1...𝑀,𝑛=1...𝑁 .

If a range grid 𝑟𝑛 = 𝑟0 + 𝑛Δ𝑟 and a wavenumber grid 𝑘𝑚 = 𝑘0 + 𝑚Δ𝑘 are used and if

Δ𝑘 = 2𝜋/(𝑁Δ𝑟) is chosen to fulfill the Nyquist condition, after compensation of the start

range 𝑟0 and the start wave number 𝑘0 we get for𝑀 = 𝑁 the complete discrete Fourier matrix

S = (exp {−𝑗2𝜋𝑚𝑛/𝑁})𝑚=1...𝑁,𝑛=1...𝑁 .

Figure 4: ISAR images of a satellite observed with the Fraunhofer-radar ’TIRA’. Left top: ISAR image of the
whole satellite. Right top: Hamming-windowed FFT image of a detail with an oversampling factor of 2.8 in both
directions. Left bottom: CS-image with the same oversampling factor. Right bottom: Overlay of Hamming- and
CS-image. 𝑁 = 18055, 𝑀 = 2296

Fig. 1 shows the result of CS-reconstruction if only a random selection of 𝑀 wave-numbers

out of 𝑁 is used. The result is really striking and inspiring! The spiky reflectivity distribution is
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nearly perfectly reconstructed though noise was added. A first general question is arising: How

robust are the algorithms against deviations from the model y = Ax? There are two sources of

error: The first is additive noise which effectively can be taken into account by using the basis

pursuit denoising. The second is a deviation of the signals from the signal model underlying

the assumed matrix A. These are due to imperfect calibration, but also to a deviation of the

real position (here: the real range) from the specified grid. The latter situation is simulated

(see Fig. 1 right) for ranges randomly chosen in the range interval. Obviously, the result is still

considerable though a kind of sidelobes appear. There exist methods to perform a fine estimation

of the positions and to reconfigure the grid with nearly optimum reconstruction results.

4.2. Is CS better than conventional methods like matched filtering?

If y = 𝑥a+n where n is a realization of a random vectorN with expectation 0 and covariance

matrix 𝜎2I𝑀 , the maximum signal-to-noise ratio of a linear estimator of 𝑥 is achieved by the

matched filter 𝑥𝑚𝑓 =
aHy
‖a‖22 . This is also the best unbiased estimator of 𝑥, if N is Gaussian

distributed. But this is only valid if only one coefficient is present! For our model y = Ax+ n

the matched filter can also be applied: x̂𝑚𝑓 = AHy; Here the columns ofA are normalized to �2
unit vectors, i.e. diag

(
AHA

)
= I𝑁 without loss of generality. We remark that this technique is

applied in various fields of radar signal processing, as pulse compression, beam forming, SAR

image generation, ... Is it still optimum, if 𝑁 > 1 ? First, it is no longer unbiased for any vector

x with at least two elements unequal to zero, since 𝐸[x̂𝑚𝑓 ] = AHAx and AHA cannot be the

unit matrix for 𝑁 > 𝑀 . For randomly chosen Fourier vectors the expectation of the �2-norm of

the bias ∥𝐸[x̂𝑚𝑓 ]− x∥2 is calculated to 𝑁−𝑀
𝑀
∥x∥22 independent on the the structure of x.
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Figure 5: Range profile reconstruction for a spiky scene corrupted by a quadratic phase error. N = 200, M = 50,
S = 5. Left: The history of reconstruction over 10 iterations. Right: start and final estimation of the amplitude. The
latter was upshifted by 0.5 to improve the clarity.

A better estimation quality in this sense is got by the classical estimator x̂𝑒𝑚 = A†ywhereA† =
AH

(
AAH

)−1
is the pseudo-inverse of A. This estimator is the solution of the minimization

of ∥x∥22 subject to y = Ax analogue to the �1-minimization. Its expectation is equal to PAx
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Figure 6: Left: CS image of a simulated object with phase errors. Right: After phase correction using sparse
represenation and phase gradient estimation

where PA = AH
(
AAH

)−1
A is the projector on the𝑀 -dimensional subspace spanned by the

rows of A. The expectation of the norm-squared bias xH(I − PA)x is equal to 𝑁−𝑀
𝑁
∥x∥22 for

the partial Fourier case.

In Fig. 2 left the MMS deviation of the estimated from the true x as obtained by a simulation

series is plotted against the sparsity degree. We recognize that for the matched filter and en-

ergy minimization estimators the errors are independent on S and close to the expected values√
𝑁−𝑀

𝑀
(= 2) and

√
𝑁−𝑀

𝑁
(= 0.89), respectively. These large errors are no wonder since with-

out further assumptions about x a good estimate based on the underdetermined equation system

is impossible! However, we daily apply this method, also with𝑁 > 𝑀 , e.g. for Fourier analysis

or SAR imaging with a grid finer than the resolution cells, of for beamforming with a thinned

array, and so on.

Much more convincing is the result for CS reconstruction! The error is nearly zero as long as S

is small enough, in the example around S = 10, but also for larger S the advantage with respect

to the two classical methods is still large. Similar conclusions can be gained by looking at the

correlation coefficient between scene and reconstructed scene, see Fig. 2 right.

The answer to the question ’Is CS better than conventional algorithms?’ in this light should be

answered with ’Yes, it is!’. At least if the a priori assumption of the scene-sparsity is fulfilled.

5. Can CS produce super-resolution?

If the grid carrying the scene has a spacing smaller than the Rayleigh resolution cell, there is

hope arising that CS reconstruction could show super-resolution properties [31, 32]. The num-

ber of measurements 𝑀 may be chosen according to the Nyquist sampling, while the number

𝑁 of grid points is increased by a certain zoom-factor. On the other hand, the incoherency of

the sensing matrix is reduced since the model signals for scene points separated less than a
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Figure 8: Left: Simulated flight pathes of a number of aircrafts with velocities between 100 and 500 m/s with
straight and curved trajectory segments. Observation time: 400 seconds at a temporal spacing of 2 seconds.
A simulated receiver noise of - 10 dB relative to the signal power after range compression was added to the
measurements. Right: Estimated flight paths using BOMP in combination with iterative fine estimation of posi-
tions. For each time frame the block sparse reconstruction is obtained for 𝑁 = 17214 image points and totally∑L
l=1 𝑀

(l) = 4230 measurements.

Fig. 3 shows the two-dimensional reconstruction of three lines cutting across with a zoom-

factor 4 for both dimensions. The lines were assumed to be ’raw’, i.e. with random phase along

them. Still the basic pursuit denoising algorithm works exhibiting a much sharper image than

the classical Hamming-windowed FFT. In fact, the CS-result shows super-resolution properties.

Where the lines approach more than about a half of the resolution cell, their images mostly are

melting to only one line. The CS image shows another interesting effect which can be detected

also for imaging with real data: Instead of reproducing a solid line, we observe something
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like a dotted line. We can explain this effect by the goal of CS to reduce the number of non-

zero scattering points as much as possible while the measurements still have to be close to the

assumed values Ax̂. A densely dotted line can explain the measurements nearly as well as a

solid line, the remaining error vanishes in the noise floor.

How does this approach work for real-world data? Fig. 4 shows ISAR imaging of a satellite.

The data were obtained with the Fraunhofer space observation radar ’TIRA’. The CS-image of

a detail of this satellite looks a little bit curious, since it consists only of points. It cannot be

said that it looks ’better’ than the conventional image processed with Hamming-windowing.

Nevertheless, there appear two lines on the structure at left bottom which cannot be recognized

in the classical image. We may call this ’super-resolution’. Perhaps it is the best to put the

classical and the CS image together to get maximum information about the object.

6. Parametric models and autofocus

Sometimes the model used for CS is dependent on an unknown parameter vector ϑ, for instance

in ISAR imaging when motion parameters are not known perfectly. This can be described either

by a signal model depending on this parameter:A(ϑ)x = y+n, x S-sparse, or by a parameter-

dependent compensation matrix Φ(ϑ) which is applied to the measurements: Φ(ϑ)y = Ax.

In the latter approach Φ(ϑ) describes e.g. the compensation of phases induced by remaining

motion errors. In both cases we would for instance like to minimize a linear combination be-

tween the �2-error and the �1-norm of ∥x∥ over x and ϑ, i.e. ∥A(ϑ)x− y∥22 + 𝜆∥x∥1 = Min!,

or ∥Ax − Φ(ϑ)y∥22 + 𝜆∥x∥1 = Min!, respectively. We have developed an iterative procedure

for the latter problem improving the estimate of ϑ in each step (by a second order Taylor ap-

proximation) and subsequently calculating new weight vectors for the enhancement of sparsity.

A similar algorithm was proposed in [33].

The capability of our algorithm to estimate subsequently the unknown parameters driving the

sparsity is illustrated in Fig. 5. A measurement with a thinned number of frequencies of a scene

sparse in range was simulated imposing a quadratic phase error. The task of the autofocus algo-

rithm is to remove the error phases by applying a chirp correction with subsequently adjusted

slope. After a few iterations the recovery of the spiky scene is nearly perfect.

Another type of autofocus for two-dimensional object imaging based on sparse reconstruction

and estimation of phase gradients is dealt in [34]. A simulation result is shown in Fig. 6.

7. Block sparsity: CS application to PCL

A passive coherent location (PCL) network is in many aspects different from classical radar

sensors. The goal is to efficiently use the illumination from emitters of opportunity for the

purpose of airspace surveillance by receiving the reflected waves by one or more passive units

which may be dislocated [35]. This constellation is an involved version of multi-input multi-

output (MIMO) radar with given, non-optimum positions of transmitters, a priori unknown
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transmitted waveforms and distributed frequency bands. Each individual Tx-Rx pair measures

primarily the bistatic distance to an object determining its position only partially, i.e. unknown

remains the exact place on the surface of the bistatic ellipsoid. Secondly, the measurement of

the Doppler frequency gives the sum of the radial velocities to Tx and Rx which does not restrict

the possible positions on the ellipsoid directly [36].

For larger bistatic angles or different frequencies the individual Tx-Rx pairs of a PCL network

cannot be assumed to work coherently. Consequently, the complex amplitudes related to the

same target will be uncorrelated. This is exactly the situation of ”block sparsity” [37], i.e. nearly

all target positions on a search grid are empty with amplitudes equal to zero, whereas at the

sparse points of present targets the amplitudes related to the different sensors are different and

mostly non-zero. For this case CS theory offers strong tools for scene reconstruction.

Let us regard a general system of 𝐿 linear sensors. Relating to PCL, the expression ”sensor”

stands for a transmitter (of opportunity) plus a ’co-located’ array of receiving antennas, i.e. the

complete aperture of the receiving array is small enough to guarantee phase coherency among

the co-located receiving antennas. A PCL network is composed of a number of such elementary

sensors. As a generalization of the scene as we have used before, now to each point ω𝑛 ∈ Ω there

belongs an 𝐿-tuple of reflectivities
(
ρ
(1)
𝑛 , . . . , ρ

(𝐿)
𝑛

)
describing the amplitudes of a scatterer seen

by the different sensors. As before, by choice of a representation basis B the reflectivities are

transformed to coefficients
(
𝑥
(1)
𝑛 , . . . , 𝑥

(𝐿)
𝑛

)
, see Fig. 7 left. By collecting all coefficients to an

𝑁 × 𝐿 matrixX the scene now is characterized by

X =

⎛
⎜⎝
𝑥
(1)
1 . . . 𝑥

(𝐿)
1

. . . . . . . . .

𝑥
(1)
𝑁 . . . 𝑥

(𝐿)
𝑁

⎞
⎟⎠ . (2)

While the 𝑛-th row vector x[𝑛] of this matrix describes the amplitudes at the scene point ω𝑛

seen by the 𝐿 sensors, the 𝑙-th column vector x(𝑙) reflects the amplitudes of all scene points as

seen by sensor number 𝑙. Let ξ(X) := (�2(x[1]), . . . , �2(x[𝑁 ]))
𝑡
be the vector of the Euclidean

norms of the rows ofX, i. e. the square roots of the accumulated energies related to each scene

point. A scene is called block-sparse of order S if the number of coefficients of ξ(X) larger

than zero is equal or smaller than S. In our situation of airspace surveillance this means that not

more than S airplanes are visible by at least one of the sensors.

Each of the 𝐿 sensors performes measurements which are linear superpositions of the measure-

ments at each scene point: y(𝑙) = A(𝑙)x(𝑙) + n(𝑙). A(𝑙) is the sensing matrix related to the 𝑙-th

sensor with dimension 𝑀 (𝑙) × 𝑁 , if 𝑀 (𝑙) is the number of measurements of this sensor. n(𝑙)

denotes the noise vector for sensor (𝑙). The 𝑛-th column of A(𝑙) can be regarded as a signal
model for the measurements performed by the sensor (𝑙) if a normalized amplitude x

(𝑙)
𝑛 = 1 is

present at scene point ω𝑛 and all the other amplitudes are zero. Clearly, the complete ensemble

of𝑀 =
∑𝐿

𝑙=1𝑀
(𝑙) measurements could be summarized in a single system of linear equations,

but it is numerically better to handle the 𝐿 equation systems separately.
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In the literature there are presented a few algorithms for the reconstruction of the scene un-

der the condition of this signal model and the assumption of block-sparsity. Examples are the

mixed �1/�2 optimization minimizing ∥ξ(X)∥1 under the constraints y(𝑙) = A(𝑙)x(𝑙) or the Block
Orthogonal Matching Pursuit (BOMP) [37] as generalization of the OMP.

We have tested block-sparse recovery with a simulation series of a number of airplanes flying

through the scene. Fig. 8 shows the simulated flight pathes and the results of sparse reconstruc-

tion using the BOMP algorithm with an additional component estimating the fine positions of

the targets between the grid points. Both BOMP and position refinement aim to minimize the

remaining energy sum over all sensors which cannot be explained by the actual assumed target

positions.

8. Conclusions and outlook

We have presented various applications of CS to radar tasks. Many of them are very promis-

ing, open a new view to radar sensing and show new possibilities. Especially for spatial sparse

sampling the benefits of CS are apparent, since each new proper, i.e. non-synthetic, spatial sam-

ple means an antenna, a T/R-module etc. and drives the costs of the system. Nevertheless, it’s

time to review the CS-techniques and to judge objectively the profit against classical methods.

As a rule, sparse sampling should not reduce the accumulated signal-to-noise ratio (SNR), it

should be the rule not to simply throw away samples which were gathered before, since this

would reduce the potential accumulated SNR. It cannot be the aim, first to build up a system

with given SNR specifications producing a certain data rate, and then to use only a part of the

data to reduce the data rate again. There are other methods to produce a lower amount of data

from the beginning without loosing SNR, e.g. the technique of illumination with a set of dis-

tinct frequencies simultaneously. Random choice of sampling times, frequencies or particularly

aperture positions often can be carried out only once, namely during system design. For the rest

of the system life time this choice has to be accepted.

In the very recent years, new ideas have come up, for instance algorithms driving down the

rank of matrices analogue to the sparsity of vectors, adaptive dictionaries obtained by learning

systems, or the handling of large sensor networks, which again could revolutionize the sensing

techniques. So we expect that in a few years a new review of CS applied to radar would exhibit

extremely interesting new techniques.
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Abstract: This paper describes the historical development and status of active phased 
array radar technology and how they are used in today’s systems – with special emphasis 
on cost aspects, market prices and funding. The hardware related price drivers are 
mostly understood and currently optimized e.g. by introduction of new semiconductors 
and light-weight materials. This is not valid for new algorithms, resource management 
and signal processing, where research is not that advanced. The authors also discuss cost 
issues, which are in comparison with technology an equal decisive driver for introducing 
such radars. Given examples and prices focus on European radars primarily. 

 
 

1. Introduction: A Brief History of Phased Array Radars 
Many modern radars apply active or passive phased array antenna technology. They root back 
more than 80 years, when it was introduced to communication systems (1). The application to 
radars dates back more than 70 years in MAMMUT early warning radar (1941), built by 
GEMA in Germany (2) and could be considered as the world’s first (passive) phased array 
radar. This VHF radar covered an antenna area of 500 aquare meters! 
After WWII the phased array radar technology has been developed extensively in various 
countries at different speed, but the U.S. and Russia put the highest R&D effort into this, 
especially focused on radars for homeland defence and airborne radars. 
Starting in the 1970s, the passive phased array antenna radars started to take off using a single 
transmitter. Telefunken’s TRMS radar has been the first German passive phased array radar 
designed in the seventies and ordered by the German army in the early eighties. 
(3) From the nineties, radars with active electronically scanning phased array antennas 
(AESA) came up and systems were built, which used up to 100.000 solid state transmit-
receive modules (e.g. US-GBR/Thaad program (4) or the 4-face APAR radar for German / 
Dutch frigates (3)). This technology makes the radars more capable for missile defence and 
guidance. Also the reliability went up, pushing their mean time between critical failures 
(MTBCF) from a couple of hundred hours well into 4-digit numbers. Furthermore, compared 
to passive phased arrays, AESA radars do not suffer from microwave losses in both the 
frontend’s microwave paths.  
Although AESA antennas become also more bulky, more expensive and need more prime 
power, their advantages increasingly overcompensate the disadvantages. Nevertheless, 
passive phased arrays or even reflector antennas are still used in many applications onboard 
ships, aircraft and on land and will eventually survive in niche market (see also chapter 2). 
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Figure 1: German fighter radars from M-SCAN to E-SCAN 

(courtesy of EADS Deutschland GmbH) 
 

2. Radar Application Trends 
Increasingly, phased array radars will conquer or already have conquered many areas of radar 
applications. It already applies to long range air defence radars, airborne multimode radars 
and missile tracking radars. Even high performance security radars already use phased array 
radar technology (see Figure 2).  

 
Figure 2: AESA supports multi-mode operation of coastal surveillance radars including and beyond 

 vessel traffic services (Spexer 2000C™, courtesy of EADS Deutschland GmbH) 
 
However, VTS (vessel traffic services) radars, ATC (air traffic control) radars and monopulse 
target trackers seem quite robust against this development as these applications do not need 
simultaneous radar modes and other AESA features. Today, we find many AESA radar 
applications in X-Band (8-12GHz), e.g. fighter radars, security radars, air defence radars. 
Therefore, these applications enjoy the highest AESA performance growth. 
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Table 1: radar application with respect to antenna technology trends 

Radar application Today’s antenna 
technology 

Tomorrow’s antenna 
technology 

Constraints 

Air Traffic Control M-SCAN M-SCAN Certification, 
Reliability 

Vessel Traffic 
Services 

M-SCAN M-SCAN; E-SCAN, if 
security application 
required in parallel 

Price  

Navigation radars M-SCAN M-SCAN Price 
Automotive radars E-SCAN E-SCAN Price, size, robustness 
Security radars M-SCAN, 

E-SCAN 
E-SCAN Price, multi-mode, 

weight and energy 
Air Defence radars M-SCAN E-SCAN Detection sensitivity, 

simultaneous modes 
Missile Defence 
radars 

E-SCAN E-SCAN Discrimination, 
tracking capabilities 

Fighter radars M-SCAN, 
E-SCAN 

E-SCAN Multi-role, MTBF, 
simultaneous and non-
radar modes 

Airborne and space 
surveillance radars 

M-SCAN, 
E-SCAN 

E-SCAN Surveillance time of a 
given area, simultan-
eous modes 

Naval radars M-SCAN 
E-SCAN 

E-SCAN; M-SCAN 
with E-SCAN 
capabilities 

M-SCAN with E-
SCAN capability 

Tracking radars  M-SCAN M-SCAN; E-SCAN Tracking speed, size 
 
 

3. Radar Market and R&D Investments (Cassidian market inteligence) 
 
Global Market: 
According to Cassidian’s internal market sources there is a global 11bn€ military radar 
market; including another 2 Bn€ for ATC, civil aircraft and security applications, we see the 
total market around 13bn€ enjoying a 5% annual growth rate. Among these, the military 
airborne and space market consume some 50% of these budgets. Note that automotive and 
road traffic applications are not considered here. 
 
Research and Development Investments (military, space and security): 
As the operational tasks for radars become more diversified (e.g. global ballistic missile 
proliferation or increasing security concerns), also the global radar R&D funding keeps a very 
high 3bn€ baseline, thereof 500M€ pure research. Typically, the research circles go between 3 
and 20 years. Development cycles for new radars are typically between 3 years and 8 years 
after the research phase until fielding the first series product. Variants go between 18 months 
and 3 years. This is quite long compared to development cycles for civil communication 
electronics, e.g. mobile phones. Nevertheless, the radar R&D investment is quite high related 
to revenues. Research on phased array radars will continue to be a strong investment at 
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academia as well as in industrial or governmental labs. Therefore, radar research and 
development will continue for some decades to come
 
Table 2: military, space and security radar investments and market size 

 
Today’s antenna technology trends include light-weight and broadband technology and new 
semiconductor materials. They are more than matched by data and signal processing 
techniques, e.g high-resolution modes, radar resource management, net-centric or multi-mode 
operations, and higher sophisticated or simultaneous waveforms. 
 

4. Radar Prices 
Prices of Transmit-Receive Modules (TRM) 
As the number and price of TRMs and the surrounding antenna modules significantly drive 
the prices for conventional AESA radars, these modules define the affordability to military 
and security forces. Therefore, some applications cannot afford TRM based AESA radars, but 
use other architectures, e.g. distributed receive and transmit modules.  
 

    
Figure 3: Typical Transmit Receive module block diagram of chipset and real Cassidian TRM (5) 

 
Nevertheless, conventional TRMs are the substantial part of today’s highest performance 
AESA radars. Consequently, the TRM prices are under pressure, which attracts many research 
and development activities. E.g., the US research authority DARPA consistently asks for a 
100 US$ TRM, but prices of reliable TRMs are still in excess of 500€. As the microwave 
monolithic integrated circuits (MMIC) chipset contribute some 40-60% of the total cost of a 
TRM, many R&D activities focus on these semiconductors, targeting both GaN and SiC for 
military application (see Figure 4).  
 
Table 3: numbers of TRMs and prices of AESAs for different radar types 
Radar type Typical # of TRM Price range / € 
Airborne fighter radar 1500 500 - 1500 
Space radar 500 5000 - 10000 
Ballistic missile defence radar 10000 500 - 1500 
Security radar 50 500 - 1500 

Radar investments and life 
cycles (2012 status) 

Research 
programs

Development 
programs 

Production 
programs 

Market 
growth rate 

Annual global investment 500 M€ 3 Bn€ 10 Bn€ 3-5% 
Life cycles per program 3-20 years 3-8 years 5-15 years n.a. 
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Not only MMIC chipsets are optimized but also surrounding infrastructures and control 
devices. E.g. GaN devices are more robust against power reflections and heat and use higher 
voltages. Therefore, limiters can be simplified and power cable losses are reduced leading to 
lower overall system cost. 
Space radars are even much more expensive also due to space qualification and preselection 
of their TR-modules, which cost up to 5 times more than usual TR-modules depending 
strongly on module yield and applied space qualification procedure. 
 

 
 

Figure 4: Semiconductor material options (5) 
 
Backend Price Developments (signal and data processing): 
As signal processing power becomes considerable cheaper, it is anticipated to have constant 
backend prices in order to compensate for more powerful software if e.g. simultaneous modes 
and higher data rates are required. However, the one time development cost for the software 
becomes a decisive funding factor as the software cost counts for up to 50% of the radar non-
recurring cost. The upward potential of active phased array radars are strongly driven by 
advanced waveforms, radar resource management and powerful signal processing techniques, 
which are less understood than hardware technologies. Therefore, the wording Software 
defined radar will become increasingly true – also from a cost point of view. 
 
Total Radar System Price: 
Also radar prices strongly vary among different applications. As the development cost has 
strong influence on lower number military radars, it shows reduced effects on larger volume 
markets, e.g. automotive sensors, where much higher numbers are sold. For the same reason, 
the comparably high number of airborne radars show many functions and capabilities at a 
reasonable price level. Nevertheless, the military phased array radars won’t become cheaper 
over years, but more powerful due to AESA and follow-on technologies. 
 
 

Radar type Air / missile 
defense and 
AEW radar 

Naval multi-
mode radar 

Airborne 
fighter rad. 

Airborne and 
space surveil-
lance radar 

ATC 
radars 

Average price 8-100M€ 2-20M€ 2-8M€ 0.5-8M€ 2-5M€ 

R
F 

po
w

er
 (W

at
t)

 

frequency [GHz] 
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Table 5: selected radar prices of radars <1M€ 

Radar type Security 
radars 

VTS 
radars 

Navigation 
radars 

Automotive 
radars (OEM) 

Average price 100-700k€ 100-300k€ 1-30k€ 0.2-2k€ 
 
 

5. Outlook 
Phased array radars made a real breakthrough some 40 years and continue to push away other 
types of radars. However, many non-AESA legacy systems are still in use with solid perfor-
mance giving AESA radars a good perspective for long-term growth. The future will see even 
more array antenna technologies. One of them is the concept of multi-functional arrays 
combining radar, data links and electronic warfare modes. This application typically require 
GaN modules due to its broadband and robustness requirements. Another development is the 
MIMO radar (6), which commands multiple different transmitted waveforms instead of single 
transmitted waveforms. Although research is ongoing for both frontend and backend 
technologies, the radar research and development investements will increasingly become 
more software loaded than in the past. As the funds are limited from academia, industry and 
government, both performance requirements and radar selling cost will be an equal decisive 
factor for developing new radar technologies. 
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