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1. Fundamentals of grain boundaries and grain boundary migration 

1.1. Introduction 

The properties of crystalline metallic materials are determined by their 

deviation from a perfect crystal lattice, which occurs due to their intrinsic crystal 

defects. Without those crystal defects, metals would never have been used in 

such a wide variety of applications [2]. There are different types of crystal 

defects which are distinguished by their spatial dimension. One of the longest 

known and most important defects in metals is the grain boundary, a two-

dimensional planar defect, which separates two adjacent crystallites of the same 

crystal structure and chemical composition, but of different orientation [1]. 

Since any crystalline material, except for single crystals, is granular-structured, 

grain boundaries are the fundamental defect in polycrystalline materials, 

exerting a substantial impact on their properties [2]. 

1.2. Classification 

In three-dimensional space, there are eight degrees of freedom, which means 

eight independent parameters are required to assign a mathematically exact 

definition to a given grain boundary [9]. Three parameters are necessary to 

define the orientation relationship between two adjacent grains which are 

usually represented by an Euler angle triplet ( 1, , 2), by Miller indices or by 

an angle-axis pair in Rodrigues-Frank space [2, 3, 4]. 

Two more parameters are needed to define the spatial orientation of the grain 

boundary plane, i.e. the boundary inclination, which are expressed by the 

normalized crystallographic normal vector of the plane of inclination n = (n1, n2,
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n3) with respect to one of the adjacent grains. Additional to these five 

macroscopic parameters there are three independent values of the microscopic 

translational vector t = (t1, t2, t3) [2]. All intrinsic properties of grain boundaries, 

particularly mobility and energy, are functions of these eight parameters [1]. The 

five macroscopic parameters may be influenced externally, whereas the 

translational vector t is determined by the minimum of the total energy of the 

crystal. 

To determine the dependence of grain boundary properties on the five 

macroscopic parameters introduced above, it would be necessary to keep all but 

one degree of freedom constant and successively vary one free parameter [1, 2]. 

However, under realistic experimental conditions only one set of parameters 

may remain at a fixed value. The most common investigation procedure 

therefore is to change an orientation relationship by varying the rotation angle 

and keeping the plane of inclination fixed with respect to a reference point or 

vice versa while preserving one common axis of rotation [1]. 

1.3. Presentation of misorientations 

The misorientation or orientation relationship between two differently 

oriented crystallites is a spatial transformation applied to one crystal in order to 

bring both orientations to coincidence [1]. Assuming a common origin for both 

lattices, this is achieved by a simple rotation of one lattice relative to the other, 

which is conveniently expressed by a rotation transformation matrix mg :
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where iC  and jC  are the crystal coordinate systems. The easiest way to 

describe such a rotation matrix is in terms of a rotation axis <hkl> common for 

both lattice coordinate systems and a rotation angle (Fig. 1-1), since for many  

    

  Fig. 1-1: Rotation about axis <uvtw> of angle 
      brings coordinate system 1 and 2 to coincide. 

cases it is of major interest to investigate the influence of the rotation angle on a 

grain boundary property for a certain rotation axis [1]. Thus, it is common to 

keep the grain boundary inclination constant and only take into account the 

rotation angle dependence. Consequently, grain boundaries may be divided into 

three different categories. In case of a rotation axis perpendicular to the grain 

boundary plane, the grain boundary is given the denotation twist boundary (Fig. 

1-2 a). For this type of grain boundary the grain boundary plane is exactly 

defined and independent of the rotation angle. In Figures 1-2 b and 1-2 c the 

class of tilt grain boundaries is depicted. The major difference to twist 
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boundaries is that the rotation axis is aligned parallel to the boundary plane [1]. 

Consequently, an infinite number of possible grain boundary planes exists for a 

given rotation angle. Further, one distinguishes between two types of grain 

boundary within the class of tilt boundaries. Under the special conditions that 

mirror symmetry is satisfied between two adjacent grains, the boundary is 

labeled as a symmetrical tilt boundary (Fig. 1-2 c). All other configurations are 

denoted as asymmetrical tilt boundaries (Fig. 1-2 b) [1]. 

Fig. 1-2: Schematic depictions of a) a twist grain boundary and b) an 
asymmetrical tilt and c) a symmetrical tilt boundary [1] 

Grain boundaries that do not satisfy either of the criteria of the first two 

classes are termed mixed or random grain boundaries and consist of both twist 

and tilt components. 
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1.4. Atomic structure   

An additional means to classify grain boundaries is to categorize them, 

depending on their misorientation, by distinguishing between low angle grain 

boundaries (LAGBs) and high angle boundaries (HAGBs). In the following 

sections the difference between these grain boundaries regarding their 

microstructural configuration will be addressed. 

1.4.1. Low angle grain boundaries 

Providing the case that the misorientation angle between two neighboring 

grains is small enough (LAGB), the misorientation of the grain boundary is 

achieved by lattice distortions introduced by dislocation arrays. In case of a 

symmetrical 0110 tilt boundary, the configuration consists of a single set of 

edge dislocations with Burgers vectors b , where the dislocation spacing directly 

correlates with the misorientation angle  (Fig. 1-3a) [1]. 

2
sin2

d

b
                  (2.1) 

Accompanied with an increasing misorientation angle  the spacing d

decreases as depicted in Fig. 1-3. 
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Fig. 1-3: a) Schematic depiction of a symmetrical low angle tilt boundary, b) 
measured and calculated dislocation spacing versus tilt angle  in a 
symmetrical LAGB in Germanium [1] 

For asymmetrical tilt grain boundaries (Fig. 1-2 b), in which the boundary 

plane deviates from its symmetrical position by an inclination angle  (Fig. 1-

4), at least two sets of edge dislocations are necessary to accommodate the 

boundary configuration. The Burgers vector of these two dislocation sets must 

be perpendicular to each other (Fig. 1-4 a) and with increasing asymmetry, the 

fraction of the second set of dislocations ( 2b ) has to increase, 

sin
1 2

2

b

d
                 (2.2) 

while the fraction of dislocations with Burgers vector 1b  decreases with .
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Fig. 1-4:  a)  Lattice dislocation arrangement [1] and b) rotation angle  and 
inclination angle  of an asymmetrical tilt LAGB. 
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Small angle twist boundaries require two sets of screw dislocations and in the 

most general case of mixed LAGBs the boundary structure is comprised of 

dislocation networks of three Burgers vectors [5]. By applying this dislocation 

model of LAGBs, which was developed by Read and Shockley [6], the exact 

calculation of free grain boundary energy is possible. As derived by Read and 

Shockley, the stress field of dislocations in an infinite periodic array is spatially 

limited to a range of the order of spacing d . In case of an edge dislocation its 

energy dE  per unit length is thus expressed by: 

a) b) 

1uvtw
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where  is the Poisson ratio,  the shear modulus, br0  the radius and cE  the 

energy of the dislocation core [1]. Keeping in mind, that this equation needs to 

be applied to a set of dislocations, which compose a LAGB, we introduce the 

number of dislocations per unit length bdn //1 to the above equation 

and thereby obtain the energy per unit area for the case of a symmetrical tilt 

grain boundary: 

ln1ln
)1(4

2
BAEb

b c
symm
b     (2.5) 

where bEA c /  and )1(4/bB . Comparing the energies obtained by 

calculation with equation 2.4 to experimental data [7] proves the validity of this 

dislocation model, as the energy increase with increasing angle of rotation  is 

predicted, accordingly, for angles 15 [1]. 

1.4.2. High angle grain boundaries 

For rotation angles larger than 15°, the lattice dislocation model no longer 

applies, as the dislocation cores are brought to an overlapping [8], causing the 

loss of their identity as individual lattice defects. Therefore, grain boundaries 

with rotation angles larger than 15° are distinguished from LAGBs and are 
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termed high angle grain boundaries (HAGB). The current concept of the 

structure of HAGBs was deduced from geometrical considerations, based on 

dislocation models for LAGBs and atomistic simulations [5, 7, 9, 1]. 

Most commonly, the structure of interfaces is described by the coincidence 

site lattice (CSL)- displacement shift complete (DSC) lattice construction. The 

atomic arrangement in a perfect crystal is determined by the minimum of free 

energy and any deviation of the former from ideal positions inevitably causes an 

increase of the latter [2]. Consequently, it is safe to assume that the atoms will 

remain close to their ideal position. At certain misorientations between two 

crystallites, crystallographic planes exist that transcend the grain boundary from 

one crystallite to the other, i. e. certain atomic positions in the grain boundary 

coincide with ideal positions in both neighboring crystallites. These atomic 

positions are termed coincidence sites and the super lattice containing these sites 

on the other hand is the aforementioned coincidence site lattice (CSL). The 

elementary cell of the CSL is self-evidently larger than the elementary cell of 

the crystal lattice and its volume may be calculated in terms of the lattice 

parameters of the crystal lattice. The CSL is characterized by the density of its 

coincidence sites, which in turn are defined by the quantity  [2]: 

     
latticecrystalofcellelementaryofvolume

CSLcellelementaryofvolume    (2.6) 

Since coincidence sites are representations of atoms located at ideal fit 

positions, it is safe to assume that grain boundaries preferably stretch along 

coincidence sites [2].  
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Fig. 1-5:   a) Coincidence site lattice (CSL) of a 36.87° <100> grain boundary  
   ( =5). Left: grain boundary plane is perpendicular to paper plane (tilt 
   boundary). Right: grain boundary plane is parallel to paper plane   
   (twist boundary). b) CSL and displacement shift complete lattice (DSC) 
   at 36.87° <100> rotation in a cubic lattice. [1]

Grain boundaries containing a high density of coincidence sites are called 

CSL boundaries or special boundaries. The order of the boundary increases with 

the decrease of the value, which is always an odd integer. Experimental data 

show that CSL grain boundaries of low indeed consist of a low energy 

configuration, which is reflected by a low free surface energy [10, 11] and low 

grain boundary migration activation enthalpy [12]. However, there is a 

fundamental problem in applying this concept to real, arbitrary grain boundaries: 

since the CSL only exists at very special, defined angles and does not 

continually change with misorientation angle , the long range coincidence is 

lost even for small deviations [2]. This may be compensated by the introduction 

of dislocations with DSC Burgers vectors which are also referred to as 
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secondary grain boundary dislocations (SGBDs), as they are confined to the 

grain boundary [1]. 

Detailed analysis revealed that 7 different polyhedra (see. Fig. 1-6) are 

necessary to account for all possible arrangements of atoms in a grain boundary 

[13]. 
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Fig. 1-6:  The seven Bernal structures, of which the structural units of GBs are  

    composed [13, 38]. 

These polyhedra represent characteristic structures of the grain boundary and 

are thus termed structural units. It has been shown by computer simulations, that 

low energy boundaries consist of only one type of structural unit [2]. Upon 

changing the orientation relationship, other structural units are introduced into 

the boundary plane, which are identical to the cores of SGBDs. The density of 

the newly introduced structural units increases with the grain boundaries 

misorientation angle, until eventually the grain boundary structure solely 
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consists of these new structural units. This concept of structural units constitutes 

our current understanding of grain boundary structures [1]. 

Analogously to the dislocation model of LAGBs, where the model by Read 

and Shockley [6] applies, the CSL-DSC model is no longer valid above a 

maximum deviation  from exact CSL-misorientations, because the spacing of 

the SGBDs decreases with increasing deviation. As such, the SGBDs above a 

certain deviation of the misorientation angle tend to overlap and therefore lose 

their individuality. The most common criterion for the maximum deviation 

proposed by Brandon [15] reads: 

15
                  (2-7) 

Grain boundaries satisfying this criterion are referred to as special grain 

boundaries as opposed to random grain boundaries. 

1.5. Classical model of grain boundary motion  

Over the past 60 years, grain boundary motion has been subjected to 

extensive experimental and theoretical investigations. However, to this day no 

unified theory about grain boundary migration has been published, which were 

able to account for phenomena such as the misorientation dependence of grain 

boundary mobility as observed for instance by Aust and Rutter [16]. Basically, 

all theoretical attempts to describe grain boundary motion are based on the 

reaction rate theory by Smoluchoski [17] and Turnbull et al. [18], in which 

individual atoms cross the grain boundary accompanied by a net energy gain. It 
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is assumed that the detachment of one atom from a crystal to join the crystal 

across the boundary destroys a lattice site rather than creating a vacancy and that 

its attachment to the adjacent crystal surface generates a new lattice site as 

opposed to eliminating a vacancy [1].  

Grain boundary
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G
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Grain 1

Grain boundary
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Gm

x
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Fig. 1-7: The free energy G of a moving atom  
 changes by the driving force pb3 when it  
 crosses the grain boundary. Gm is the free 
 energy barrier for bulk diffusion [1]. 

Following these assumptions, grain boundary motion is conveniently 

simplified to diffusive motion of single atoms across the boundary rather than 

the uniform motion of atom groups.  

We shall now derive the rate equation for grain boundary velocity, as seen in 

Ref. [1]: for the simplest case, the grain boundary is assumed to have a thickness 

of a monatomic layer, hence the boundary may be crossed by a single atomic 

jump and each transferred atom displaces the boundary by the diameter of an 

atom. Grain boundary velocity v  is then expressed by [19] 
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bv                 (2.8) 

where + and - are the jump frequencies in opposite directions, respectively. In 

case of zero difference in Gibbs free energy between the two grains, the net flux 

will also equal zero. However, any difference in Gibbs free energy per unit 

volume gives rise to a driving force p:

dV
dGp                    (2.9) 

In that case, each atom attaching to the growing grain of volume 3 b3 will 

gain the energy 3pb The change in Gibbs free energy associated with this 

process is schematically shown in Fig. 1-7. The grain boundary velocity then 

reads:  

kT
pbG

kT
Gb mm

3

expexpv      (2.10)

The assumption of equal jump frequencies + = - = D ( D – Debye-frequency) 

and equal migration free energy Gm for both jump directions simplifies the 

equation to

kT
pb

kT
Gb m

D

3

exp1expv        (2.11) 
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Further assuming that pb3<<kT for T   0.3Tm , a series expansion of the second 

exponential term 

kT
pb

kT
pb 33

1exp              (2.12) 

finally yields for velocity v

pmp
kT
G

kT
vb mD expv

4

          (2.13) 

where m is referred to as grain boundary mobility, the proportionality factor of 

the fundamental linear relationship between grain boundary velocity and driving 

force. Variable m basically contains all the kinetic characteristics of the grain 

boundary. Furthermore, it is also distinguished between the intrinsic mobility 

determined by grain boundary misorientation and inclination and the extrinsic 

mobility primarily governed by impurity content and dislocation densities. 

By introducing the Nernst-Einstein relation for general diffusive processes 

(volume diffusion, grain boundary diffusion, etc.) without specification into the 

equation, the relation between grain boundary mobility and diffusion of atoms 

across the boundary reads: 

kT
Hm

kT
Dbm m exp0

2
            (2.14) 
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mD  is the diffusion coefficient for diffusion jumps through the boundary, 0m

and H  are the pre-exponential factor and activation enthalpy of the grain 

boundary mobility. This simple model may be modified by assuming the 

detachments to occur in a sequence of steps or thermal grain boundary vacancies 

to assist diffusion [20]. However, these modifications will only affect the pre-

exponential factor 0m  and the activation enthalpy H  of mobility m  leaving the 

migration rate v  and the driving force p  unaffected [1]. 

1.6. Driving forces of grain boundary migration 

The driving force p  is a force acting per unit area on a grain boundary and its 

source may be of various origins. Generally, a driving force emerges when the 

motion of a grain boundary results in reducing the system’s overall free energy. 

A gradient of any intensive thermodynamic variable offers a source of such 

driving forces: temperature gradients, pressure, density of defects, energy 

density (elastic, magnetic, electrical), etc. A more detailed treatise on the various 

driving forces utilized in grain boundary migration experiments was written by 

Gottstein and Shvindlerman [1]. 

1.6.1. Magnetic driving force 

We shall now take a detailed look at the magnetic driving force, which was 

predominantly applied to induce grain boundary migration in the experiments 

featured in this work. Mullins was the first to use the driving force induced by a 
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high magnetic field to induce grain boundary migration in bismuth polycrystals 

[21].  

Due to its anisotropic properties, zinc possesses a different magnetic 

susceptibility parallel ( II ) and perpendicular ( ) to its hexagonal or c-axis 

such that | II |>| |. The susceptibility tensor is represented by: 

| |00
00
00

              (2.15) 

As shown schematically in Fig. 1-8 below, the susceptibility tensor surface 

for zinc has an ellipsoidal shape. 

 Therefore, inside a magnetic field a driving force for grain boundary motion 

is induced between two crystallites due to a difference of magnetic free energy 

density , which is given by   

1
2

2

0
00 jiij

H
llHHdMH      (2.16) 

where 0  is the vacuum permeability and H  is the magnetic field strength. The 

magnetic polarization specific to the material is given by HM   (see eq. 

2.15) and ls = cos s are the cosines between the principal crystal axes and the 

magnetic field H .
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Fig. 1-8: Schematic depiction of the anisotropy of 
magnetic susceptibility in zinc, with respect 
to the unit cell. The spatial dependence of the 
magnetic susceptibility may be described by 
a second rank tensor and is represented by 
an ellipsoidal surface [22]. 

As shown analogously in Ref. [22] for other anisotropic crystal properties, we 

shall in the following develop a general expression for the magnetic driving 

force. Taking into account, that there are only two independent susceptibility 

components in zinc, equation 2.16 reduces to: 

   
2
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lllH           (2.17) 

which since  
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may be further simplified to: 
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      (2.19) 

Thus, a general expression is obtained for the magnetic free energy density 

associated with a given orientation of a zinc crystal in an external magnetic 

field, dependent on only one spatial variable, 3, the angle between the 

crystallographic c-axis and magnetic field vector H . To calculate the driving 

force for magnetically induced grain boundary motion p, the magnetic free 

energy density associated with the two orientations of the crystallites in the 

magnetic field separated by the grain boundary have to be subtracted from one 

another, which finally results in: 

2
2

1
2

2

021 coscos
2

Hp      (2.20) 

where 1 and 2  are the angles between the c-axes in both neighboring 

crystallites and the magnetic field H . The susceptibility difference in Zn was 

measured to be = 0.5 10-5 and found not to depend on the temperature [23]. 

Now that the driving force for bicrystalline samples was deduced, we will 

proceed to magnetic driving forces in polycrystals: as applied in [24, 25], the 

magnetic driving force for the growth of each grain in a polycrystal is given by 

equation 2.21 below. Like discussed above for the case of bicrystalline samples, 

the crystallites with energetically favorable c-axis orientation with respect to the 

field are bound to grow while the crystallite with a less favorable orientation 
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will shrink. This is caused by the differing magnetic susceptibility in zinc 

parallel and perpendicular to its crystallographic c-axis. Equation 2.21, as 

introduced in Ref. [24], describes the magnetic driving force acting on one grain 

in a polycrystal, 

n
H

n
Hp

n

j
j

j

n

j
m

2

22
0

2
0

cos
cos

2
11

2
(2.21) 

where  and j  are the angles between field direction and the principal axes of 

the grain considered and its n  neighboring grains. If 0  (which is true for 

Zn) and the condition n nn 0cos/1cos 22  is met by the one grain 

and its adjacent grains, the magnetic energy density  in the one grain is lower 

than the average energy density of its neighboring grains ( ). Thus, the 

magnetic driving force promotes growth of the former grain, as then 0mp

[24]. 

 The largest obtainable driving force is governed by the magnetic field 

strength at disposal and the magnetic susceptibility difference  of the 

material under investigation. In the case of zinc, the maximum driving force pm

is calculated to 1.2 kJ/m3 in high field magnets with a maximum field strength 

of 25 Tesla. Considering the applicability for grain boundary migration 

experiments, two major advantages over the capillary driving force (see section 

1.6.2 below) are: 
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1.) The magnetic driving force facilitates the addressing of absolute grain 

boundary mobility as opposed to reduced mobility, thus enabling the 

migration measurements of  crystallographically defined grain boundaries 

and studying the inclination dependence of activation parameters.  

2.) The possibility to adjust the magnitude of the driving force during the 

experiment.   

Curvature driven migration experiments do not yield the absolute mobility as a 

result, as the grain boundary inclination changes along the curvature and with it, 

consequently, its structure.  

 Therefore, in curvature driven migration experiments one basically obtains 

the averaged mobility of a large set of differently inclined grain boundaries, 

rather than the absolute mobility of one spatially defined, planar boundary. 

1.6.2. Capillary driving force 

Unlike with grain growth induced by a magnetic driving force, where the free 

energy gain during grain boundary motion originates from the alignment of 

crystal volume swept by the boundary to an orientation associated with lower 

magnetic susceptibility, the capillary driving force is provided by the free energy 

of the grain boundary and stems from the pressure difference p , caused by the 

difference of capillary forces on both sides of a curved grain boundary [1]. The 

capillary pressure is expressed by: 
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21

11
RR

p               (2.22) 

where  is the grain boundary free energy and 1R , 2R  are the main radii of 

curvature under the assumption of boundary isotropy. Upon thermal activation 

this driving force induces boundary motion in the direction towards the center of 

curvature, causing a reduction of grain boundary area and, consequently, energy. 

However, the use of the capillary driving force only permits to evaluate a 

reduced boundary mobility, mA , where the grain boundary free energy is 

still part of the equation and thus factors into the obtained mobility values. 


