1 Introduction and Objectives

Several studies have investigated the effect of mechanical stress on microbial cell morphol-
ogy and productivity in bioreactors by influencing the various morphological structures.
BUCHS and ZOELS [20] and PETER et al. |117] have investigated power consumption and
hydrodyanmical stress in less geometrically complex systems such as shaking bioreactors.
Meanwhile, in systems that are more complex from a practical standpoint, other research
groups have tried to replace the biological phase with the clay-floc system due to similar
physical properties and investigate the mechanical stress, as MAHNKE et al. [86] car-
ried out in bubble column, PiLz and HEMPEL [119] in two- and three-phase airlift loop
reactors and bubble columns, HENZLER and BIEDERMANN [52| and STINTZING et al.
[145] in stirred tank reactors. Finally, HENZLER [51]|, KELLY et al. [57|, LIN et al. [82],
and WUCHERPFENNIG et al. [155] have experimentally investigated the productivity and
morphology as a function of mechanical stress in the stirred tank bioreactors (STBR).
The mechanical stress mainly originates from two sources in STBRs, namely stirring
and aeration through which the cells are subjected to normal and shear stress types and
subsequently strained. As GRIMM et al. [48, 49| have suggested, the mechanical stress can
further influence the morphology and even the growth of the filamentous fungi. Therefore,
it is crucial to determine the magnitude and the reason for these various types of stresses.
Generally, there are two distinct ways to characterize the mechanical stress, either
by measurement (experimental fluid dynamics, EFD) or by numerical simulations. The
measurement techniques cannot provide a fully three dimensional stress pattern and are
time consuming. However, it is possible to determine the sources of stresses, as proposed
by LIN et al. |82], or to develop semi-empirical equations, as proposed by PILzZ and
HEMPEL [119], and STINTZING et al. [145]. Furthermore, recent efforts have provided
accurate data on the mechanical stress or turbulence kinetic energy in turbulent systems
by neglecting the multiphase natures and simplifying the reactor geometry [29, 45].
Because of lack of generality in experimental results and time consuming efforts, it
is reasonable to use the computational fluid dynamics (CFD) in order to compute the
fluid dynamical parameters. The predicted velocities and other flow dependent terms are
in turn set to be post-processed so that the stress tensor is determined throughout the

reactor. However, the mechanical stress caused by turbulent flows is not a parameter that
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can be effortlessly determined and the less complicated turbulence models like k- are not
suitable models in this field. Additionally, more complicated models require increasing
resources in terms of computational power. The coexistence of several phases in the system
elevates the difficulty level in terms of numerical approaches and various phenomena
dealing with phase interactions should be considered in the simulations [59, 73, 74, 77, 112].

Another distinguished property of flow simulation in bioreactors is the difference in time
scales. Most cultivations and reactions dealing with a solid biological phase last several
hours or even days to occur while sudden and intermittent change of flow characteristics
always necessitates describing the flows within even milliseconds. For instance, the study
of VETTER [150] is focused on sequential co-simulation to couple CFD and baker yeast
growth which lasts up to several days by defining a module for each area and switch
from one to another to reduce the time demand. Nevertheless, the transient simulations
have been carried out mostly in single phase simulations |25, 30]. Hence, despite large
time scale differences, more information on flow patterns in STBRs can be gained by
considering the transient effects of flows.

In the present thesis, CFD simulations are carried out in a STBR to characterize and

investigate the following points:

Quantification of the velocities and the resulting flow patterns representing most

bioprocesses dealing with biopellets and exhibiting Newtonian flow behavior in both
steady-state and transient-flows [113, 155|. Furthermore, the two turbulence models,
namely SSG and SST models, are further assessed and their results are validated

with the measured flow properties.

- Investigation of mean normal stress and the volumetric power input as global pa-

rameters which determine the mechanical stress in the entire system.

- Characterization of real bioreactors with non-Newtonian cultivation broths in sub-

mersed cultivation of stress sensitive Aspergillus niger.

- Quantification of the mechanical stress and continuous and dispersed phase flows of

water /air binary flow in the STBR in both steady state and transient flow regimes.

- Comparison of various impeller types from the energy uptake point of view. The
gross flow pattern for steady state flow will be determined to provide more insight

into this topic.
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2.1 CFD in Stirred Tank Reactors - a Review

Stirred tank (bio-)reactors (STBR) are the most frequently used equipment in the (bio)che-
mical engineering. CFD provides a substantially reliable database through which the
process can be optimized regarding the transport phenomena as the primary result of
carrying out the CFD simulations [40]. As secondary results of carrying out the CFD
simulations STBRs, the process parameters such as pH, mixing- and residence- time, nu-
trient concentrations, dispersed size distribution, volumetric mass transport coefficient,
etc. can also be listed |78, 96, 98, 157|. As the main outcome of broad diversity of the
CFED applications in STBRs, one can classify the major objectives of CFD studies in
single- and multi-phase systems. In the late 1990’s the bioproceses also found application
in CFD studies [40].

In dealing with biochemical processes, the complexity rises due to coexistence of several
phases. For instance, the cultivation medium is regarded as liquid-, microorganisms as
solid and oxygen, nitrogen, carbon dioxide, etc. as gas phase [39, 40]. Furthermore, from
both theoretical and practical point of view, it is more important to identify which phase
is continuous and which one is dispersed. This is of paramount importance in multiphase
systems, since the interfacial momentum transport and the subsequently derived equations
can be considerably influenced by any assumption and simplification in this regard |54,
64, 78, 110, 137|.

In single phase systems, the characterization of fluid dynamics have initially been car-
ried out experimentally and supplied a database for further simulation which can be used
for validation of simulation results qualitatively and quantitatively, as well. For example,
in the works of KRESTA et al. [68] and SCHAFER et al. [135], the turbulence length scale
has been examined in detail. This has been carried out with Laser Doppler Velocimetry
(LDV) and the main measured parameters were the turbulence kinetic energy and the
mean velocities. Both works also discussed the dependency of turbulence length scale on
measurement grid cells and mixer diameter. The study of SCHAFER et al. [135] shows
the measurement limitations, while the other describes the fluid dynamical dependency of
turbulence length scale. In the study of MAVROS and BAUDOU [89], the important agita-
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tion index was determined and the effect of impeller discharging flow is also considered.
However, the definition of agitation index contributes to more practical dimensionless
numbers such as power number was not discussed. This work was continued aiming to
determine the fluctuation velocities and thereby the turbulence kinetic energy [90]. In
addition, the switching probability of velocity vectors has been discussed, as well. Other
measurement techniques such as positron emission particle tracking (PEPT) have also
been evaluated in stirred tank with various types of impellers pursuing the same fluid
dynamical characteristics [42]|. Using experimental methods also makes the design of im-
pellers and modification of geometries possible which in turn needs more sophisticated
techniques such as three-dimensional laser Doppler anemometry to quantify the main dis-
charge zones and the turbulence intensity by using the agitation index, hydraulic- and
energetic efficiency of impellers, as investigated by AUBIN et al. [12]. In one of the
most recent studies, GALLETTI et al. [45] predicted the important Reynolds stress tensor
components which is the main topic in present study, in order to provide an insight into
mechanical stress in stirred tanks. They also used three-dimensional LDA and used the
ensemble-averaged measurements to further examine the anisotropy and isotropy in the

stirred vessel.

The validation of CFD results with experimental data makes the understanding of
different turbulence dependent phenomena possible and further serves for extension of
simulation data to more unknown or complex geometries. In one of the pioneer works,
NG et al. [105] showed how consistent the simulation with the experiments had been.
The reactor was stirred with Rushton turbine and the agreement was around 60% with
big deviations in turbulence kinetic energy. The authors used the sliding grid approach
to connect the inner moving- and outer non-moving sections of the reactor proposed by
BRUCATO et al. [18|. In a similar study, however with axial pumping impellers, JAWORSKI
et al. |56| faced the same difficulties and some qualitative agreement could hardly be
observed. This could be possibly due to coarse mesh used in both studies. The later
attempts have been focused on stirrer type and their phenomenological fluid dynamic
behavior. KHOPKAR et al. [61] tried to elucidate the difference between batch and
continuous runs of stirred tank and how the continuous mode can be optimized concerning
the position of impeller and that of inlet and outlet. In two separate studies by AUBIN
et al. |10, 11|, other aspects of CFD simulation such as assessment of multiple reference
of frames method or sliding grid, the influence of turbulence models were investigated.
Moreover, AUBIN et al. [12] carried out the grid dependency test with relatively moderate
number of grid cells (from 76,000 to 350,000) and compared the results with those of
previous investigations. The authors could not fully validate the results due to high

inconsistency in circumferential velocities and still coarse mesh used in the study. Later
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on, a more sophisticated research was undertaken by KUMARESAN and JOSHI [72] to
characterize a broad range of pitched blade turbines (PBT) at various operational modes.
One of the main results of this research was the assessment of more practical power- and
mixing time numbers which help design the reactor more accurately. Even the normal

mean stress and the scale-up criteria have been discussed.

In recent years, large eddy simulations (LES) have attracted attentions in stirred vessel
simulations. This method provides a time dependent (transient) simulation and generally
delivers more accurate results. ALCAMO et al. [2]| carried out a simulation for unbaffled
stirred vessel with relatively good quantitative agreement between the simulated values
and the measured ones. However, the radial velocity deviated up to 75 % at certain
heights in reactor coinciding with high velocity gradient regions. In order to find out,
whether the LES is more beneficial than unsteady state simulation with conventional
RANS, DELAFOSSE et al. [30] investigated the turbulence kinetic energy and the kinetic
energy dissipation. They concluded that LES can capture the periodic property of tur-
bulence kinetic energy, however the constants such as the Smagorinsky constant, plays
a key role in LES approach. In another work, MURTHY and JOsHI [103] showed that
despite the advantages offered by LES, one can reach almost the same results by using
turbulence models from Reynolds stress model (RSM) family and save some computa-
tional resources. They further discussed the importance of two equation models such k-
in such simulation. These models can certainly provide the preliminary results in the

shortest, time period.

Despite all single phase simulations gains, they cannot reflect on what exactly happens
within the STBR due to existence of more complex multiphase flows which cannot be
always neglected. The multiphase flows can neither be measured nor simulated as easily
as single phase flows. Thus, there are more researches on this topic, although serious critics
have been made considering the validity of multiphase turbulence modeling and interfacial
momentum transport [110, 114]. In one of the early works, MORUD and HJERTAGER
[101] carried out a two-dimensional simulation in a 15 L stirred tank reactor. They varied
fas g D™
used. They succeeded to qualitatively validate their results with LDA measurements.

the gassing rate from 0.1 to 1.3 m min~!' (vvm) and a two phase k-¢ model were
However, they did not further produce any information on the circumferential velocity,
fluctuation velocities and turbulence kinetic energy. Later efforts were focused on fully
three-dimensional simulations. For instance, DEEN et al. [28] used a single gassing rate of
0.5 vvm and a two phase particle image velocimetry (PIV) for results comparison. They
further evaluated the choice of drag model, which of the Ishii-Zuber [54] or the Schiller-
Naumann model [137] would result in more accurate data. This was discussed based on
the form of bubbles and their distortion characteristics and the judgment went in favor

of Ishii-Zuber model.
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In a more theoretically challenging aspect of CFD simulations in multiphase systems,
numerous efforts were devoted to characterize the interfacial momentum transfer. KHOP-
KAR et al. [62] modified the drag coefficient model of BRUCATO et al. [19] to obtain
more accurate results. The results, however, could not predict the considerable decrease
of power number observed by ZLOKARNIK [160| when the flooding takes place. In similar
work, LANE et al. |77] had more satisfying results and more stirrer types were tested.
However, the results for pitched blade turbines apparently suffered from numerical con-
vergence problem. In another study, KHOPKAR et al. 60| applied their proposed drag
model [62]| in a more complicated geometry with triple mixer configuration. The mixing-
and circulation time considerably deviated from experimental results which in turn, is due
to general difficulties in flow characterization of pitched blade turbine and the unorthodox
geometry of the investigated system. In binary gas/liquid simulations, one can consider
the effect of internal interactions of dispersed phase particles in causing turbulence. In
this regard, KHOPKAR and RANADE [63] added an additional equation to the source
term leading to more satisfying outcome. Still, this approach could not easily predict the
cavitation zones behind the impellers. The drag coefficient has been further modeled by
including the bubble terminal rise velocity into the drag model, as carried out by SCAR-
GIALI et al. [134]. They calculated the gas hold-up more accurately and the gas hold-up

distribution in the reactor.

The gas/liquid simulations may not always be considered as simulations in which the
dispersed phase possesses a single size distribution. Therefore, it is more convenient to
take the entire size distribution into account and investigate the phenomenon how one
particle from a certain size class falls in another class due to breakage or coalescence of
particles. This is mostly performed by using the population balance equations (PBE)
which are additional transport governing equations for internal parameters (e.g. diam-
eter) [123]|. Furthermore, how the coalescence or break up models are derived is also a
cumbersome task. LLANE et al. incorporated the model of Wu [153] bubble coalescence
[76]. Unfortunately, due to geometrical complexity of their system, one could not fully
justify their choice of model, since there was hardly a quantitative agreement between
the experiments and simulations. Thus, the first attempts were confined to easier simu-
lations such as the effort of VENNEKER et al. where a two-dimensional simulation in a
stirred tank of xanthane was carried out [148]. They observed that the simulation results
were consistent with the measured bubble size. However, the mean velocities and their
fluctuations were not discussed thoroughly.

It is clear that inclusion of the PBE’s demands more computational resources due to
additional differential equations. Consequently, some authors have tried to introduce

approaches that fulfill the primary objectives of population balances yet require less re-
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source. For instance, KERDOUSS et al. [59] adapted the methods of classes (CM) |71, 123]
to their equations in a 2 L- reactor and validated the results for k£pa and Sauter diameter.
The usage of CM-method is clearly more advantageous than methods using mean normal
diameter which was also observed in bubble columns by BANNARI et al. [13].

Other approaches such as multiple size group - (MUSIG) or bubble number density-
approach (BND) serving for mathematical description of coalescence and breakage were
assessed by MOILANEN et al. [98] and MONTANTE et al. [99], receptively. While the for-
mer considers the bubbles differing in size with same slip velocity, the latter solely turns
the focus on the bubble density number. The BND approach produced approximately
the same results as MUSIG with kinetic energy dissipation as exception. Nevertheless,
both approaches are still an extra burden compared with simulations coupled with PBE
without them. Therefore, in another study, KERDOUSS et al. [58] set the root mean
squared (RMS) as convergence criterion for the residues of all transport equations equal
to modest 1073 due to comparatively very long time needed to reach the numerical con-
vergence. Another approach used by GIMBUN et al. [47| is the quadrature method of
moments (QMOM)which is the least demanding approach of the mentioned here. They
applied their results for further scale-up problems and validated them with the experi-
mental results of DEEN et al. [28|. However, no bubble size distributions were provided,
since this approach simply assumes all bubbles of the same size are and the momentum

transfer between phases is determined by this single diameter.

In case of solid particle as dispersed phase, the approaches are the same as gas/liquid-
simulations. However, the solid phase cannot be considered as continuum any more.
Hence, the Euler-Euler may not be as suitable Euler-Lagrange method. Moreover, the
density difference is the main index separating the solid /liquid- from the gas/liquid- sim-
ulations. Still, the interfacial momentum transfer emerges as the main challenge here,
too.

Early attempts were devoted to the methodological investigations in terms of exploring
the suitable approach. For instance, MICALE et al. [96| evaluated two models; the
settling velocity model (SVM) and the multi fluid model (MFM). In SVM, the solid
phase builds a cluster of particle sinking and rising in the fluid and do not have any
impact on the continuous phase, whereas in MFM the momentum transport equations
are extended, so that the influence of the dispersed phase can be correctly showed. The
authors concluded that up to a solid phase concentration of 10 kg m~=2 both models perform
at same level. However, the SVM fails to predict the solid phase profiles in concentrations

beyond 10kgm™>. In other studies, the drag force- and drag coefficient- models were
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modeled by algebraic models. ALTWAY et al. [6] used an algebraic slip model (ASM)
to assess the various particle size and mass fractions. The results revealed that higher
accuracy can be reached if the flow is simply laminar and the periodic boundary conditions
are not included in the system. This was also confirmed by SAEED et al. [131] where even

the shape and size of caverns [85] in non-Newtonian fluids is given correctly.

In solid /liquid- simulations, the suspension height is an important parameter in process
design. MICALE et al. |95] tried to simulate the experimental results of BUJALSKI et al.
[21] with their proposed MFM model. The suspension height was in good agreement with
the experimental results, while the simulated and measured power number significantly
differed from each other. This is due to underestimation of mean velocities and their
fluctuation values. The major cause of this finding was, according to LJUNGVIST et al.
[83|, the drag models do not suit to this type of simulations and the Euler-Euler approach,
either. Their results were observed by OCHIENG and ONYANGO [106] later. However,
they showed that the realistic solid mass fraction is still the modest 1 % in cases where

the flow is fully turbulent.

The most desirable objective in simulations is to take all phases into account. As men-
tioned earlier, most (bio-)chemical processes are dealing with three or sometimes more
phases [39]. However, there are serious doubts in credibility of models implemented in
such simulations. For instance, MURTHY et al. [102] tried to evaluate the criterion pro-
posed by BOHNET and NIESMAK [15]. Despite successful implementation of the criterion,
the authors did not provide any further information on experimental validation of flow
patterns. The critical impeller speed as a function of particle diameter to fully disperse
the particles was investigated by MURTHY et al. and PANNEERSELVAM et al. [104, 112].
They used experimental data of binary measurements and made remarks on mass trans-

port within the system.

In case of more sensitive biological systems, one faces severe challenges on both simula-
tion and measurement (validation) levels. This is due to several parameters and phenom-
ena such as cell- growth and -lysis, viscosity and rheological changes of cultivation media,
turbidity of media, etc. However, the efforts of GHADGE et al. [46] and LAPIN et al. [78|
were concentrated on biotechnological processes. While the former investigated the pro-
duction of cellulase and determined the specific power input and global normal stresses,
the latter simulated the glucose uptake by FEscherchia coli in a STBR. They used a re-
duced biological network proposed by CHASSAGNOLE et al. [23] and used Euler-Lagrange
approach. Their effort resulted in a time dependent substrate uptake scheme in the sys-
tem, whereas any fluid dynamical prediction was not tested against the reality. In later

works, XIA et al. |157| carried out the simulation with various process parameters such as
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impeller type, in order to optimize the productivity of avermectin by Streptomyces aver-
mitilis. They simultaneously determine the morphology as supporting parameter to have
a better understanding of the system. Despite missing information on fluid dynamical
validation, the above mentioned studies shows the path towards simulation of biological

systems and the confronting challenges.

2.2 Governing Equations

This section will discuss fundamental equations and discretization schemes, the numerical
approaches in single phase and multiphase flows, and the existing models in rheological
studies. The governing equations to be solved in CFD are the differential or integral
forms of mass, momentum- and energy conservation laws. It is noteworthy to mention
that the conservation equations are primarily used for an infinitesimal amount of mass,
known as control mass. However, since it is rather impractical to follow a rapidly passing
parcel of fluid within boundaries of interest, a certain region with a known volume will
be defined and the balance equations are written for fluxes entering and exiting through
the surfaces of this region. As a result of this approach, the control mass is replaced by
a control volume [43, 44|. In addition, in the control volume approach, the properties
are intensive, which means that the balance equations are independent from the amount
of the matter. Generally, an intensive property ¢ for the conservation parameter & is
defined as the following
P

= . (2.1)

with m denoting the mass. It is obvious that in this approach, ¢ = 1 and ¢ = u for
mass and momentum, respectively, while u is the velocity vector. Using this approach
allows deriving the so called Reynolds transport theorem or control volume equation.
This equation restates the accumulation term within the control mass in a valid form for
control volume and its surrounding boundaries, the so called control surfaces, shown in

Figure 2.1.

d d
— ppdV=— [ pedV + /pgo(u—ub)-ndS (2.2)

dt ot
Vem Vev Scv
where Vg is the volume of control mass, Vo and Sgy denote the volume and surface
of the control volume, respectively. The relative motion between fluid parcels and the
control volume is assigned by the term in parenthesis in second integral on the right hand
side of the equation. This equation implies that the rate of change of an intensive prop-

erty in the control mass is equal to its rate of change in the control volume plus the net
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flow through the boundaries due to relative motion. The latter is known as convective
(advective) term, as well [14, 124].

Figure 2.1: Streamlines, control volume and control surfaces in an infinitesimal balance

element in control volume approach

The mass conservation, also known as the continuity equation, is pivotal in all CFD
problems and will be discussed in the following. Indeed, the intensive mass value is equal
to unity. Furthermore, the mass balance is without the generation term (sink or source

terms), as it is not in the scope of the present work at any stage

dp Dp
Fiy. — ZF_
o TV W=
The left hand side of the equation (2.3) is better known as the substantial derivative,

0 (2.3)

which takes both the local change of the parameter (in this case density) and its rate
into account. In other words, the motion of fluid parcels, in this case the control volume,
serves for the local change of the density gradient in the system.

The momentum conservation equation, also known as the equation of motion, looks
relatively more complicated than the continuity equation. Generally, the momentum
conservation equations are derived in a way similar to the way the continuity equations are
written. However, the convective terms and the viscous terms appear in more complicated
tensor forms. The fully expanded momentum conservation equation can be written as the

following for Cartesian coordinates:

10
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For the sake of simplicity, the equations 2.4 are written in vector form:
Du
pﬁ——V-T—Vp#—pg (2.5)

As mentioned earlier, the left hand side of equation denotes the rate of momentum change
due to the convective flow and the local momentum rate per unit volume. The dynamic
viscosity emerges as 4 in this equation. The first terms on the right hand side are the
viscous forces per unit volume and the last two terms are forces exerted due to the pressure
gradient and gravitational forces respectively.

It is assumed that the stress tensor is symmetrical, implying that 7,; = 75 [124], and
this assumption does not violate the modeling approaches in the following chapters. The

components of the stress tensor are defined as the following

ou, 2
Tew = 20 5 3 1V - u (2.6a)
ou 2
Ty = 24 8—; — ghV-u (2.6b)
ou, 2
_ Y. 2.
Tex =205~ — 3 uV-u (2.6¢)
ou Oy
ou, Ouy
Txz Tzz ,U( c%c 82 ) (269)
ou ou,
Tyz = Toy = ,u(a—zy + By ) (2.6f)
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In CFD, there are two special cases of the motion equation which are frequently used as
listed below:

(i)

The Navier-Stokes equation: The equation of motion will be simplified, if the fluid
density and viscosity are constant. This equation is the fundamental equation in the
present work. The difficulties arise in solving the Navier-Stokes equation necessitates

using appropriate and feasible modeling at different steps of solution
Du
"Dt

The main property of this equation is its non-linearity in the most general form due

= —uVu—Vp+pg (2.7)

to the gradients of the stress tensor and bulk flow momentum

The Euler equation: if the viscous forces are negligible or very small compared with

the convective forces.
Du

pa 2.8
oy Vp+pg (2.8)

In turbulence flows, due to the unsteady and intermittent nature of macro- and micro-

eddies and complex boundary conditions, there is no analytic solution for either Navier-

Stokes or Euler equations. Therefore, numerical methods are applied and then will be

commenced with discretization of the differential equations and meshing the simulation

geometries.

2.2.1 Numerical Grid and Discretization

The first and most important step in the numerical solution of governing equations is to

split the solution domain in subdomains according to prescribed dimensions that may not

exceed the physical boundaries of the original geometry of interest. There are various

types of such grids that will be chosen based on geometrical complexity and simulation

demands.

(i)

12

Structured grid: if the grid lines of one family do not cross their counterparts from
other families, or cross them just once, a structured grid will be obtained. So,
the grid nodes will be notated as the Cartesian coordinate system and each node
would have just 2, 4 and 6 neighbor nodes in a 1-, 2- and 3-D grid, respectively (cf.
Figure 2.2). There is not much numerical difficulty in terms of the consistency of
algorithms with this type of grid and the numerical matrix of algebraic equation
has a regular structure, which is suitable for most algorithms consuming usually
less computational resources. However, one cannot easily control the distribution

of grid nodes due to a 1:1 correspondence between the grid lines of each family and
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this would lead to either an over-dense mesh or an inflation of grid nodes in regions
where the mesh density does not need to be quite high.
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Figure 2.2: A two-dimensional structured grid for a nozzle

(ii) Block-structured grid: unlike structured grids, the block-structured grids are dis-
tinguished through internal, or sometimes external, blocks that shape the entities
in the solution domain. These blocks will be further meshed and may or may not
overlap each other. An example is Figure 2.3, where the inner part is an ellip-
soidal block lying in the nozzle. Each block can be treated individually with its own
grid size. As a result of this conception, it is easier to control the nodal distribu-
tion throughout the grid. Furthermore, the grid nodes of each block may match or
mismatch at interfaces. The mismatched interfaces would offer more flexibility in

meshing, whereas the numerical solution can be compromised.

\

\

Figure 2.3: A two-dimensional block-structured grid with matching interfaces
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2 Fundamentals

(i) Unstructured grid: this type of grid realizes maximum flexibility with respect to

controlling the distribution of grid refinement. The grid cells do not necessarily

possess any prescribed shape, as depicted in Figure 2.4. Still, dealing with the

resulting matrices of discretized equations is not effortless and many modifications

should be implemented. The more complex geometries suit the unstructured grids

the most, although one can save time and use an unstructured mesh for relatively

less complicated geometries in order to obtain preliminary results for detailed case

studies.

—l |

Figure 2.4: A two-dimensional unstructured grid with arbitrary grid cell size

In dealing with the numerical solution of governing equations in transport phenomena,

one can choose between three different methods; these methods serve for the discretization

of governing equations and converting the differential equations into algebraic equation

systems. The three distinctive methods used in this purpose are the finite difference (FD),
the finite volume (FV), and the finite element (FE) method. In CFD, and particularly

in incompressible flows, the FV method is the most frequently used method delivering

reliable results.

In FV method, as its name suggests, one determines the transport characterizing pa-

rameters in control volumes. The conservation equations are set to be solved for each

control volume in the solution domain are in integral form

/pgpu-ndSz/FVgp-ndS—l—/q@dV

S S \4
~ /N s N——
~~ ~~
convective flux diffusive flux source/sink

(2.9)

Under this approach, the surface integrals of diffusive and convective terms in equation

2.9 must be obtained for all faces of the control volume. Hence, the surface integral is
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2.2 Governing Equations

the sum of integrals at all faces. Let’s simplify the integrand of convective and diffusive

fluxes as f¢ and f? respectively. The surface integral can be approximated as following

/de:Z/de (2.10)

As depicted in Figure 2.5, the integral at each face (n, s, e, w) can be solved, if the
respective integrand at each face is known. However, the integrand is just known at
nodes (P, N, S, E, W) and can be approximated at intersections. Hence, the integral

at the exemplary face w is estimated by using the Simpson’s rule which is a fourth-order

approximation:
Xi.2 Xi-g X Xitl Xi+2
1
;;.I / i
1
NW N NE
@ o ® °® O
+ ",
‘_}.
- 4 nw | n ne
1
WW W n | n
w P . E EE
-0 1{-OTt-- @1 - @ - ®----f-
Ay :
Jf:r'-f h SW 15 s5€
I
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y [ ] ® ® o ®
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A.\‘: »
L] yr-_g !
. 1
[ ¢

Figure 2.5: Typical 2D control volume with nodal and facial notations for numerical grid

/de ~ %(fnw +4fw + fow) (2.11)
Sw

The volume integral for the sink or source term is relatively more demanding, since the
only known value for this term is at the centroid P and a fourth order approximation can

also be used to estimate the total volume integral for an uniform Cartesian grid:

Ax A
Qp = /qu ~ 25 Y (16gp + 4gs + 4gn + 4¢uw + 4¢e + Gse + Gow + Gne + o) (2.12)

%

15

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persdnlichen Gebrauch.



2 Fundamentals

There are several other methods to approximate the integral for transport terms at each
face as there are source or sink terms for each control volume [43, 114, 149]. Nevertheless,
the integrand values at nodes w , nw, sw, and se and faces n, s, e, and w are not known.
Therefore, interpolations should be carried out so that the approximations (equations 2.11
and 2.12 can be concluded. Of the various schemes applied in this field, this work uses
the more complex one. For instance, the Quadratic Upwind Interpolation for Convective
Kinematics (QUICK) uses a parabolic [80] dependency between nodal values to estimate

the values at each face.

_ _ f
. — op+ g (SOE 90P) +g2(90P QOW) or u, >0 (2.13)

YE+ 93(<PP — SDE) + G4 (QDE — @EE) for u, <0

where the coefficients g1, g2, g3 and g4 can be obtained as following

(e —2p)(Te — W) (e —zp)(TE — TC)
n= (xp —zp)(xp —zw) P70 P —rw)(TE — Tw) (2.14)
(ze — p)(Te — Tpp) (ze — xp)(xp — ) '

gs = ; g4 =
° (HCP - 9EE)(33P - 33EE) ! (iUE - QCEE)(?CP - I‘EE)

Or higher-order schemes are also useful, particularly if the integrals are also approximated
by using higher-order formulae. For instance, suppose that the functionality of ¢ is

described by polynomial degree three

_ 2 3
= ag )
o(x) = ag + a1z + asx” + azx (2.15)

One can apply four neighboring nodes of face e, namely W, P, E and EF, in order to

determine the a; coefficients. In a totally uniform Cartesian grid, the value ¢, reads

_ 2Tpp + 2T — 3pw — 3vEE
Pe =
48
The derivatives for diffusive term are calculated by the first differentiation of polynomial

(2.16)

fit function:

(g—i)e = ay + 2a,7 + 3asz? (2.17)

and by using the same approach as above the approximated derivative is

(8_90) _ 27pp — 2Top + Yw — YEE
ox’¢ 48 Ax
However, since in Navier-Stokes equations the velocity field is unknown, one faces a fur-

(2.18)

ther problem in approximating and interpolating the terms. This is also known as the

velocity-pressure coupling problem [114, 122, 149]. Generally speaking, particularly in
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2.2 Governing Equations

incompressible flows, there is no relationship between the pressure field and the velocity
with fluid density. This implies that the pressure determined either by the continuity or

equation of motion must fit in the other one.

One of the many possibilities to avoid physically invalid predictions in terms of either
the pressure or velocity field is to use a staggered grid. This type of grid is essential
for unstructured or block-structured grids [115]. Therefore, while one of the equations
is adapted to the cells of the staggered grid, the other set of equations is solved in the
primary grid. According to PASCHEDAG [114] and PATANKAR [115], the algorithm is
iterative and results in physically reasonable results. However, it can suffer from the

oscillating pressure field.

2.2.2 Boundary Conditions

Boundary conditions are crucial in closing the discretized equation system. Otherwise one
cannot reach a solution to this problem. Physically, the boundary conditions represent
the influence of the environment on the solution domain. If transient simulation is carried
out, additional initial conditions are also needed. Mathematically, there are three sorts of

boundary conditions that help in determining integration constants [14, 43, 114, 144, 151].

(i) Dirichlet boundary condition: this is the most common and easiest boundary con-

dition and assumes that the parameter ¢ is known at certain points, faces, etc.
¢lpc = Ci (2.19)

(ii) Neumann boundary condition: if the gradient of parameter is known, then this type
of condition is applied. Some common examples of Neumann conditions include the
conducted heat at the walls of an isolation jacket and the shear stress estimated at
walls.

0
a_i 5o = Cy (2.20)

where x refers to the Cartesian coordinate in the same direction of the normal vector

to boundary.

(iii) Cauchy boundary conditions: in this work, no boundary conditions satisfy the
Cauchy boundary condition. However, it is quite possible that in heat transfer
the temperature and the temperature gradient can be estimated via the following

equation:

Oy
— = 2.21
ax|Bc+C390|Bc Cy (2.21)
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