

Dania Kendziora (Autor)

Biofunktionalisierung von metallischen Nanopartikeln zur Entwicklung von Biosensoren

https://cuvillier.de/de/shop/publications/6424

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis 5

INHALTSVERZEICHNIS

Kurzzu	usammenfassung	9
1	Einleitung	11
1.1	Synthese und Eigenschaften von metallischen Nanopartikeln	11
1.1.1	Citrat-Methode zur Synthese von Gold Nanopartikeln	13
1.1.2	Synthese von Gold Nanopartikeln mit Thiol-Liganden	14
1.1.3	Photochemische Synthese von Gold Nanopartikeln	15
1.1.4	Polyol-Methode zur Synthese von metallischen Nanopartikeln	17
1.1.5	Synthese von fluoreszenten Gold Nanopartikeln	18
1.2	Biofunktionalisierung von metallischen Nanopartikeln	19
1.2.1	Linker zur Modifikation von Gold Nanopartikeln	20
1.2.2	Synthese von Gold Nanopartikel-DNA Konjugaten	21
1.2.3	Synthese von Nanopartikel-Protein Konjugaten	23
1.3	Anwendungen von metallischen Nanopartikeln	25
1.3.1	Fluoreszente Nanopartikel als optische Marker und Sensoren	26
1.3.2	Anwendungen von Nanopartikeln in der Oberflächen-verstärkten Raman	
Spektre	oskopie	27
1.3.3	Anwendungen von Nanopartikeln in der Tumorzellenforschung	28
1.3.4	Verwendung von Nanopartikeln als Biosensoren	30
1.4	Aufgabenstellung	32
2	Ergebnisse und Diskussion	34
2.1	Synthese von Nanopartikeln in Gegenwart von Metallothioneinen	34
2.1.1	Expression und Reinigung von Metallothionein-Fusionsproteinen	34
2.1.2	Photochemische Synthese von metallischen Nanopartikeln	36
2.2	Verknüpfung von Nanopartikeln mit BAG1-Peptiden	41
2.2.1	Modifikation des trifunktionellen Linkers mit einem Fluoreszenzmarker	43
2.2.2	Entfernung der Boc-Schutzgruppe des Atto610-modifizierten Linkers	45
2.2.3	Modifikation von BAG1 Peptiden durch Einführung eines Alkin	47

Inhaltsverzeichnis

2.2.4	Modifikation eines Propargylglycin-BAG1-Peptids durch Kupfer-katalysierte	Alkin-
Azid C	Cycloaddition	59
2.2.5	Modifikation von magnetischen Nanopartikeln mit fluoreszent-markiertem	
trifunk	tionellen Linker	62
2.3	Synthese und Modifikation von Gold Nanopartikeln zur Anwendung in der	
Tumor	zellenforschung	67
2.3.1	Synthese von Liponsäure-stabilisierten AuNP	68
2.4	Trifunktionelle Linkersysteme zur Modifikation von Gold Nanopartikeln	72
2.4.1	Synthese von Gold Nanopartikeln mit Boc-geschützten Liponsäure-Linkern	73
2.4.2	Synthese von Gold Nanopartikeln mit trifunktionellen Liponsäure-Linkern mit	freien
Amine	en	75
2.4.3	Kupfer-katalysierte Azid-Alkin Cycloaddition zur Modifikation von Alkin-	
funktio	onalisierten AuNP	82
2.4.4	Modifizierung der freien Aminogruppe der AuNP-L2a-DNA1	86
2.4.5	Untersuchung der Voraussetzungen für Immobilisierungsexperimente	89
2.4.6	DNA-vermittelte Immobilisierung von AuNP-DNA1-Häm	93
2.5	DNA-vermittelter Aufbau von Protein-AuNP-AgNP Konjugaten zum Nachwei	s in
SERS-	-Experimenten.	96
2.5.1	Synthese des EYFP-DNA4 Konjugats	97
2.5.2	Synthese von Citrat-stabilisierten AuNP	
2.5.3	Modifikation von Citrat-stabilisierten AuNPs mit DNA-Oligonukleotiden	
2.5.4	Test der Stabilität von DNA-modifizierten Nanopartikel	103
2.5.5	Immobilisierung von EYFP-DNA4 auf DNA-modifizierten AuNP	
2.5.6	Direkte Hybridisierung von DNA-modifizierten Nanopartikeln mit einem	
fluores	szenten Protein	106
2.5.7	Oberflächen-verstärkte Raman-Spektroskopie des EYFP-AuNP-AgNP Konstru	kts
		109
3	Zusammenfassung und Ausblick	114
3.1	Synthese von Nanopartikeln in Gegenwart von Metallothioneinen	114
3.2	Verknüpfung von magnetischen Nanopartikeln mit BAG1-Peptiden	115
3.3	Synthese und Modifikation von Gold Nanopartikeln zur Anwendung in der	
Tumor	zellenforschung	116

3.4	Trifunktionelle Linker zur Modifikation von Gold Nanopartikeln	. 117
3.5	DNA-vermittelter Aufbau von Protein-AuNP-AgNP Konjugaten zum Nachweis	in
SERS-I	Experimenten	. 118
4	Material und Methoden	. 120
4.1	Chemikalien	. 120
4.2	Pufferverzeichnis	. 120
4.3	Verwendete Methoden und Geräte	. 122
4.3.1	Oberflächen-verstärkte Raman Spektroskopie	. 122
4.3.2	Transmissionselektronenmikroskopie	. 122
4.3.3	Matrix-unterstützte Laser-Desorption Ionisation	. 123
4.3.4	UV-Vis und Fluoreszenz-Spektroskopie	. 123
4.3.5	Schnelle Flüssigkeitschromatographie	. 124
4.3.6	Hochdruckflüssigkeitschromatographie	. 124
4.3.7	Polyacrylamid Gelelektrophorese	. 125
4.3.8	Agarose Gelelektrophorese	. 127
4.3.9	Färbemethoden für die Gelelektrophorese	. 127
4.4	Modifikation eines trifunktionellen Linkers mit Atto610-NHS	. 128
4.5	Modifikation des HA-Peptids mit 3-Ethynylanillin durch Diazokupplung ^[178]	. 129
4.6	Kupfer-freie Azid-Alkin Cycloaddition mit Linker für Ene-artige Reaktion ^[139]	. 130
4.7	Synthese von Gold Nanopartikeln	. 131
4.7.1	Citrat-Methode ^[63]	. 131
4.7.2	Synthese von AuNP in Gegenwart von Liponsäure und Liponsäure-Derivaten ^[28]	. 132
4.7.3	Photochemische Synthese zur Bildung von Nanopartikeln ^[29]	. 133
4.8	Modifikation von Liponsäure-AuNP mit Octadecylamin	. 134
4.9	Kupfer-katalysierte Azid-Akin Cycloaddition zur Modifikation von AuNP-L2 m	it
Azid-D	NA ^[143]	. 134
4.10	Kovalente Verknüpfung von Häm mit AuNP-L2a-DNA1	. 135
4.11	Rekonstitution von Apo-Myoglobin durch Häm-DNA-AuNPs	. 135
4.12	Synthese von AuNP-Mb	. 136
4.13	Synthese des Myoglobin-DNA1 Konjugats	. 136
4.14	DNA-vermittelte Immobilisierung von AuNP	. 137
4.14.1	Beschichtung von Mikrotiterplatten mit Streptavidin	. 137
4.14.2	Immobilisierung von DNA-AuNP	. 137

Inhaltsverzeichnis

4.14.3	Bestimmung der Aktivität von Myoglobin durch AmpliFluRed TM	. 138
4.15	DNA-vermittelter Aufbau von AuNP-AgNP-Protein Konjugaten	. 138
4.15.1	DNA-Modifizierung von Nanopartikeln durch Ligandenaustausch	. 138
4.15.2	Synthese von EYFP-DNA4 Konjugaten	. 139
4.15.3	Testhybridisierung verwendeter DNA-Sequenzen	. 139
4.15.4	Hybridisierung von AuNP-DNA2-cDNA4 mit EYFP-DNA4	. 139
4.15.5	Hybridisierung von AuNP-DNA2-cDNA4 mit AgNP-cDNA2 und EYFP-DNA4	. 140
4.16	Verwendete DNA-Sequenzen	. 141
4.17	Expression von Metallothionein-Fusionsproteinen	. 141
4.18	Amylose Affinitätschromatographie	. 142
5	Abkürzungsverzeichnis	. 143
6	Literatur	. 146
7	Danksagung	. 152
8	Lebenslauf	. 154
9	Publikationen	. 155
10	Konferenzbeiträge	. 155