

Martin Georg Knörr (Autor)

Reduzierung der Verlustleistungsströme am System Kolben/Kolbenringe/Zylinderlaufbahn

https://cuvillier.de/de/shop/publications/6436

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

Vorwort	V
Kurzfassung	VII
Inhaltsverzeichnis	IX
Formelzeichen und Abkürzungen	XIII
Abbildungsverzeichnis	XVII
Tabellenverzeichnis	XXIII
1 Einleitung	1
1.1 Grundlegende Einleitung	1
1.2 Grundlagen des Ölverbrauchs	3
1.2.1 Definition Ölverbrauch	3
1.2.2 Ölverbrauch in der Literatur - Vorausgegangene Untersuchungen	4
1.2.3 Ölverbrauchsquellen	5
1.2.3.1 Ölverlust durch Blowby	6
1.2.3.2 Ölverlust durch Abdampfen	7
1.2.3.3 Direkter Öltransport in den Brennraum	8
1.2.3.4 Anteile der Ölverbrauchsquellen	10
1.2.4 Ölverbrauch im transienten Motorbetrieb	14
1.3 Grundlagen der Tribologie der Kolbengruppe	17
1.3.1 Reibung	17
1.3.2 Verschleiß	18
1.3.3 Schmierung	19
1.4 Ziel der Arbeit	21
2 Messmittel	25
2.1 Messmotor	25
2.2 Messaufbau Ring- und Gasdynamik	25
2.2.1 Messschwinge	26
2.2.2 Messkolben	27
2.2.3 Einbausituation im Motor	28
2.3 Ölverbrauchsmessmethoden	31
2.3.1 Gravimetrie	31
2.3.2 SO ₂ -Tracertechnologie	31
3 Simulationsmodelle und Grundlagen der statistischen Versuchsplanung	35

X Inhaltsverzeichnis

3.1 Simulationsmodelle Ring- und Gasdynamik	35
3.1.1 Betrachtete Betriebspunkte im Kennfeld	35
3.1.2 Abgleich Messung-Simulation	36
3.2 Theorie der statistischen Versuchsplanung	38
3.2.1 Problemstellung und Ziel	39
3.2.2 Grundlagen der statistischen Versuchsplanung	40
3.2.3 Vorgehensweise bei der Optimierung mittels statistischer Versuchsplanung	42
3.2.3.1 Systemidentifikation	42
3.2.3.2 Versuchsplan	43
3.2.3.3 Modellbildung und –analyse	44
3.2.3.4 Optimierung	45
3.2.3.5 Validierung	46
3.3 Simulationsmodell Zylinderoptimierte Kolbenringe	
3.3.1 Abaqus Modell – Modellierung der Kolbenringe und der Zylinderlaufbahn	47
3.3.1.1 Notwendige Vorbereitungen	47
3.3.1.2 Modellbeschreibung	50
3.3.2 Optimierungsalgorithmus	53
3.3.2.1 Grundaufbereitung der Simulationsmodelle für die Optimierung mittels Optimus	53
3.3.2.2 Grundeinstellungen für die Optimierung	55
3.3.2.3 Optimierungspfad Optimus	56
4 Ergebnisse der Optimierungsschritte	59
4.1 Reduzierung des Ölverbrauchs durch gezielte Auslegung der Systemrandbedingung	
Kurbelkammerdruck	59
4.1.1 Ausgangssituation - Zwischenringdrücke und Gasflüsse bei Niedriglast	59
4.1.2 Wirkungsweise der Kurbelkammerdruckabsenkung auf den Ölverbrauch	61
4.1.2.1 Messung des Zwischenringdrucks für unterschiedliche	
Kurbelkammerdruckniveaus	62
4.1.2.2 Simulation des Gasflusses in Abhängigkeit des Kurbelkammerdruckniveaus	63
4.1.2.3 Ring- und Gasdynamik bei Seriendruck und abgesenktem Druck in der	
Kurbelkammer	64
4.1.2.3.1 Ölquetschen zwischen Ring- und Nutflanken - Squeezing	65
4.1.2.3.2 Ölmitreißen durch den Gasstrom - Dragging	66
4.1.3 Simulationsgestützte Auslegung des optimalen Kurbelkammerdruckniveaus	
4.1.4 Messergebnisse	69
4.1.4.1 Wirkungsbereich der getroffenen Maßnahme zur Kurbelkammerdruckabsenkung.	

Inhaltsverzeichnis X

4.1.4.2 Beeinflussung des Blowby-Gasstroms	70
4.1.4.3 Ölverbrauchsmessungen	72
4.1.4.3.1 Stationärer Ölverbrauch	72
4.1.4.3.2 Dynamischer Ölverbrauch	74
4.1.4.4 Analyse der Reduzierung der Ölverbrauchspeaks im Kundenzyklus	78
4.1.4.4.1 Druckverhältnisse und Gasströme vor und während des Ölverbrauchspeaks	79
4.1.4.4.2 Ölansammlung in der ersten Ringnut und auf dem Feuersteg	82
4.1.4.4.3 Verantwortliche Ölverbrauchsmechanismen für Ölverbrauchspeaks	82
4.1.4.4.4 Quantifizierung des Nutfüllungsgrades in Abhängigkeit des	
Kurbelkammerdruckniveaus	92
4.1.5 Fazit	95
4.2 Optimierung des Systemverbunds Kolben/Kolbenringe mittels statistischer	
Versuchsplanung	96
4.2.1 Staffelung der Optimierungsschritte	97
4.2.2 Allgemeines zu den Versuchsplänen	98
4.2.3 Optimierungskriterien und Gewichtungen	99
4.2.4 Automatisierung der Simulationsmodelle	100
4.2.5 Erste Optimierungsstufe - DoE1	101
4.2.5.1 Optimierungsergebnisse	101
4.2.5.2 Haupteinflussfaktoren	106
4.2.5.3 Messkolben mit Anpassung an Serienringpaket	107
4.2.6 Zweite Optimierungsstufe - DoE2	108
4.2.6.1 Optimierungsergebnisse	108
4.2.6.2 Haupteinflussfaktoren	111
4.2.7 Dritte Optimierungsstufe - DoE2*	112
4.2.7.1 Probleme und Abhilfe zu DoE2	112
4.2.7.1.1 Simulative Betrachtung der Verschlechterungen	112
4.2.7.1.2 Abhilfemaßnahmen	119
4.2.7.2 Optimierungsergebnisse	120
4.2.8 Messergebnisse	129
4.2.8.1 Ergebnisse der ersten Optimierungsstufe - DoE1	129
4.2.8.1.1 Blowby	129
4.2.8.1.2 Ölverbrauch	131
4.2.8.2 Ergebnisse der zweiten Optimierungsstufe - DoE2	133
4.2.8.2.1 Blowby	133

XII Inhaltsverzeichnis

4.2.8.2.2 Ölverbrauch	134
4.2.8.3 Ergebnisse der dritten Optimierungsstufe - DoE2*	136
4.2.8.3.1 Blowby	136
4.2.8.3.2 Ölverbrauch	137
4.2.9 Absenkung der Tangentialkräfte zur Reibungsreduktion	139
4.2.10 Fazit	140
4.3 Optimierung des Bauteils Kolbenring - Zylinderoptimierte Kolbenringe	141
4.3.1 Grundlegende Voraussetzungen	142
4.3.2 Ausgangszustand	143
4.3.3 Simulationsergebnisse	144
4.3.3.1 Optimierungsergebnisse	144
4.3.3.2 Allgemeine Erkenntnisse	147
4.3.3.3 Validierung der Mittelung der Zylinderdeformation	148
4.3.3.4 Prüfung der Notwendigkeit zur Ringfixierung	150
5 Zusammenfassung und Ausblick	153
Litaraturvarzaichnic	150