
1 Introduction

Life, as we know it, is based on the capability of problem solving [Popp 96]. The prob-
lems or questions studied by natural scientists today are usually highly specialized. This
is because the solution of a problem typically opens the view on deeper problems that
have not been realized before. Thanks to the strong methodology of the natural sciences
[Popp 05] this process of basic research increases our knowledge about the nature or better
the reality, and gives the impulses for new technological applications. A basic research
field that has led to many important technological applications, e.g. of transistors and
semiconductors, is solid-state physics, which forms the theoretical foundation of materials
science. The topics covered in this thesis can be allocated to two branches of solid-state
physics: thermoelectrics and thermal spintronics or spin caloritronics.
Research in the field of thermoelectrics explores the non-equilibrium transport of charge
and heat in conducting materials and devices [Nola 01]. The basic thermoelectric phe-
nomena, which are the Seebeck effect and the Peltier effect (see Table 1.1), were dis-
covered already in the 19th century. It was soon recognized that these effects are useful
for applications, such as thermometry, refrigeration, and power generation. With the
rise of quantum mechanics in the first half of the 20th century the understanding of
thermoelectricity increased significantly, so that the most promising natural materials
for thermoelectric applications had been figured out before 1960. These are alloys of
the three compounds Bi2Te3, Sb2Te3, and Bi2Se3, which are semiconductors with rather
small bandgaps (Eg ≈ 0.1 eV) and carrier concentrations of the order of 1 × 1019 cm−3

at room temperature. In the 30 years that followed, thermoelectricity had found some
small but important applications, e.g. in radioisotope-thermoelectric generators that sup-
ply thermal and electrical power during space missions [Furl 99]. However, the efficiency
of thermoelectric refrigerators remained too small for making them competitive with con-
ventional cooling devices. Within the last 20 years, new strategies have been developed
for enhancing the thermoelectric efficiency, for example by synthesizing materials with
greater chemical complexity [Snyd 08], or by nanostructuring of thermoelectric materi-
als [Dres 07, Minn 09, Vine 10, Pich 10, Kana 10]. The latter approach endeavors to
make use of quantum confinement effects that can modify the energy dependence of the
density of electronic states and can increase their effective band gap [Pich 10]. Further-
more, it is possible to reduce the phonon contributions to the thermal conductivity by
nanostructuring [Kana 10]. A low thermal conductivity is crucial for thermal refrigera-
tion to maintain the temperature gradient during cooling, but can be less important in
the context of waste-heat recovery using thermoelectric generators [Nard 11]. Although
the great promises of nanotechnology have unfortunately not materialized to date, it is
very likely that the recent interest in waste-heat recovery [Rowe 06], as well as new ap-
plications, such as chip-scale thermoelectric cooling of transistors [Chow 09], may lead
to an increased demand for thermoelectric devices. In recent years renewed interest in
thermoelectric materials has been initiated by the prediction and subsequent demonstra-
tions that many established thermoelectric materials (e.g. BixSb1−x, Bi2Te3, Bi2Se3) can
exhibit signatures of topological insulators [Moor 10].
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2 1 Introduction

Some of the basic non-equilibrium transport phenomena are listed in Table 1.1. These
phenomena may be separated into thermoelectric effects (Seebeck, Peltier, Thomson), gal-
vanomagnetic effects (Hall, Ettingshausen), and thermomagnetic effects (Nernst, Righi-
Leduc). Furthermore, in ferromagnetic conductors there are magnetoresistive effects, such
as the anisotropic magnetoresistance effect and the giant magnetoresistance effect, as well
as so-called anomalous (planar) effects that are observed if the magnetization is aligned
perpendicular (parallel) to the currents, such as the anomalous- (planar-) Hall effect and
the anomalous- (planar-) Nernst effect. The physical mechanisms behind the anomalous
and planar effects are completely different from the respective ‘normal’ effects [Naga 10].
The common grounds that may justify the shared names are the related experimental
geometries.
The anomalous and planar effects that involve temperature gradients, as well as the
thermal and thermoelectric analogues of the magnetoresistive effects, such as the giant
magnetothermal resistance effect and the giant magneto-Seebeck effect, may be counted
to the new field of thermal spintronics or spin caloritronics, which explores non-
equilibrium transport phenomena of spin, charge, and heat transport in ferromagnetic
materials and ferromagnetic/non-magnetic hybrid structures [Baue 10, Baue 12]. Con-
sidering the spin degree of freedom further increases the zoo of non-equilibrium transport
phenomena. Effects that are denoted by ‘spin dependent’, such as the spin-dependent
Seebeck effect and the spin-dependent Peltier effect, rely on spin currents carried by spin
polarized conduction electrons, while those denoted by ‘spin’, such as the spin-Hall ef-
fect, the spin-Nernst effect, and the spin-Seebeck effect, are thought to be based on pure
spin currents. Another effect that involves pure spin currents is the thermal spin transfer
torque [Hata 07, Yu 10]. Spin currents are a major issue in the field of spintronics. This
research area has made a tremendous impact with the commercialization of magnetic hard
disk drives that use spin-valves for data reading, and is coming up with many future appli-
cations [Bade 10]. Particular attention on thermal spintronics has been triggered by the
spin-Seebeck effect − the evolution of a transverse voltage in a paramagnetic metal that
is in thermal contact with the spin-Seebeck material under the influence of a temperature
gradient and external magnetic fields. To explain the spin-Seebeck voltage it is assumed
that the temperature gradient is associated with a spin current, which flows into the para-
magnetic metal and causes a voltage due to the inverse spin-Hall effect [Uchi 08]. This
interpretation suggests that pure spin currents may propagate over macroscopic length
scales. Soon later the spin-Seebeck effect was also found, e.g., in electrically insulating
yttrium iron garnet [Uchi 10] and even in a non-magnetic semiconductor [Jawo 12]. Per-
haps over-motivated by the technological importance of spin currents, serious efforts have
been undertaken to find a theory that explains the physical origin of the presupposed
spin current in the spin-Seebeck effect [Xiao 10, Adac 13], although this spin current has
only been measured indirectly. There is an ongoing debate about this topic and it could
be possible that the spin-Seebeck effect will be explained in the light of a much simpler
theory. This view is supported by the recent work of Avery et al., who explained the
signatures of the spin-Seebeck effect in their experiments in terms of the planar-Nernst
effect [Aver 12].
So much for the problem situations of thermoelectrics and thermal spintronics. It is the
objective of this thesis to make some small contributions to these research fields. The
thesis is organized as follows:
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of our experiments. Chapter 3 demonstrates a synthesis route to nearly intrinsic
Bi2Te3 nanowires, discusses the measuring microdevice used for determining the Seebeck
coefficient, and presents a structural and compositional analysis as well as thermoelec-
tric transport measurements on individual Bi2Te3 nanowires. Chapter 4 deals with the 3ω
method, which is a prevalent measuring technique of thermal properties of bulk materials,
thin films and nanowires. The concept of the 3ω method is revisited for voltage-driven
measurement setups. Chapter 5 focuses on the electrical and thermal transport in indi-
vidual Ni nanowires. A simple model is proposed to describe a new effect, the anisotropic
magnetothermal resistance effect. Experimental results on this effect are presented. Chap-
ter 6 is concerned with the electrical and thermal transport in Co/Cu multilayers. The
Wiedemann-Franz law is revisited, which is complemented by measurements of the gi-
ant magnetoresistance effect and the giant magnetothermal resistance effect. Chapter 7
closes the thesis with a conclusion that summarizes our main results and suggests further
experiments. In Appendix A our review article “Thermoelectric Nanostructures: From
Physical Model Systems towards Nanograined Composites” is reprinted, which may by
of interest for the reader in connection with Chapter 4. In Appendix B a philosophical
article is reprinted. In particular natural scientists, who often get lost in highly special-
ized technical problems, should show an open-mindedness toward philosophical problems,
perhaps in particular toward those related to the scientific method and the history of
science (compare Ref. [Lder 12]).

Chapter 2 provides theoretical foundations that may be required for the discussion
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Table 1.1: Basic non-equilibrium transport phenomena [Nola 01]. E: Electric field, T : Tem-
perature, q: Heat current density, j: Current density, p: Power density, ρ: Resistivity, Hz:
Magnetic field strength.

Phenomenon Phenomenological description Formula
Seebeck effect A temperature gradient imposed on a con-

ductor generates a diffusion current. Un-
der open circuit conditions an electric field
acting against the temperature gradient
develops and finally balances the diffusion
current.

E = S ∇T ;
S: Seebeck coefficient.

Peltier effect A voltage imposed on a conductor gen-
erates a charge current that is associated
with a heat current. The change of the
total energy flow at a junction of two con-
ductors is accompanied by evolution of
heat at the junction.

q = Π j;
Π: Peltier coefficient.

Thomson
effect

A current traversing a temperature gradi-
ent in a conductor is accompanied by evo-
lution of Thomson heat in addition to the
Joule heat.

p = ρ j2 − μ j∇T ;
μ: Thomson coefficient.

Hall effect A current-carrying conductor placed in a
transverse magnetic field develops an elec-
tric field perpendicular to the current and
magnetic field directions.

Ey = RHHzjx;
RH: Hall coefficient.

Ettingshausen
effect

A current-carrying conductor placed in a
transverse magnetic field develops a tem-
perature gradient perpendicular to the
current and magnetic field directions.

dT
dx

= REHzjx;
RE: Ettingshausen
coefficient.

Nernst effect A heat current carrying conductor placed
in a transverse magnetic field develops
an electric field perpendicular to the heat
current and magnetic-field directions.

Ey = RNHz
dT
dx
;

RN: Nernst coefficient.

Righi-Leduc
effect

A heat current carrying conductor placed
in a transverse magnetic field develops a
temperature gradient perpendicular to the
current and magnetic field directions.

dT
dy

= RRLHz
dT
dx
;

RRL: Righi-Leduc
coefficient.



2 Theoretical Foundations

This chapter deals with the basic physics relevant for this thesis. The main focus is
on electronic transport phenomena in conducting materials, in particular ferromagnets.
Section 2.1 briefly recapitulates the main magnetic interactions in electron systems. Sec-
tion 2.2 introduces the Boltzmann-transport theory, which is used in Sec. 2.3 to quickly
arrive at the basic thermoelectric effects. Since it is a major issue of thermoelectrics to
find strategies for enhancing the efficiency of thermoelectric devices, Sec. 2.4 introduces
the thermoelectric figure of merit. In Sec. 2.5, a discussion of the basic bulk optimization
strategies that are based on tuning of the carrier concentration and looking for high carrier
mobilities follows. Section 2.6 briefly summarizes the dominant scattering mechanisms of
electrons. The two subsequent sections introduce two famous laws in solid state physics:
the Matthiessen law in Section 2.7 and the Wiedemann-Franz law in Sec. 2.8. Coming
back to magnetism, Sec. 2.9 discusses the peculiarities of electronic transport in ferro-
magnets and Sec. 2.10 introduces the anisotropic magnetoresistance effect. Section 2.11
addresses the spin-dependent diffusive transport theory that leads to the concepts of spin-
and spin-heat-accumulation, followed by a discussion of the giant magnetoresistance ef-
fect in Sec. 2.12. The last section of this chapter deals with classical size effects, which
are always present in nanostructures, and quantum confinement effects, which can play a
significant role in nanostructures.

2.1 Magnetism
There are three main magnetic interactions in electron systems [Sthr 06]: The exchange
interaction that is responsible for the alignment of spins, the spin-orbit interaction that
creates orbital magnetism and couples the spin system to the lattice, and the Zeeman
interaction that enables us to manipulate the alignment of magnetic moments.

2.1.1 Exchange Interaction
The exchange interaction is a quantum-mechanical effect between identical particles. It
arises from the symmetrization postulate. According to this postulate, the total wave-
function of an electron system is antisymmetric under exchange of any two electrons. Due
to the antisymmetric wavefunction the Coulomb potential between the electrons in the
system acts as if it was spin-dependent [Gasi 02]. The resulting change of the expec-
tation value of the energy favors either parallel or antiparallel spins. The fact that the
exchange interaction arises from the wavefunctions imposes big challenges on the theo-
retical description, in particular for macroscopic systems. Therefore, one often uses a
model Hamiltonian, e.g. the Heisenberg Hamiltonian or the Hubbard Hamiltonian, which
are designed to give suitable results for well-known problems, in combination with one-
particle wavefunctions [Sthr 06]. One distinguishes several forms of exchange. Important
examples are given in the following.
Direct exchange is due to direct overlap of the wavefunctions considered for exchange.
In He atoms direct exchange between the two electrons favors parallel spins. The ex-
change energy split between triplet and singlet states of excited He atoms is observable
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6 2 Theoretical Foundations

in the spectrum of He. In H2 molecules direct exchange between the two electrons favors
antiparallel spins. Due to the wavefunction overlap between the H+ ions a bonding or-
bital is formed. In that way, the exchange interaction gives a physical explanation of the
covalent chemical bond.
Indirect exchange between two magnetic atoms can be mediated by a nonmagnetic
atom. It leads to antiferromagnetic coupling and occurs for example in transition metal
oxides, such as NiO. This kind of indirect exchange is called superexchange, because it
extends the short-ranging direct exchange interaction to longer distances. Another impor-
tant example for indirect exchange is the RKKY interaction1 that describes the exchange
over the distance between two localized magnetic electrons mediated by conduction elec-
trons. Scattering of conduction electrons at the localized magnetic electrons generates
spin-density waves in the itinerant electron system that screen the disturbing localized
magnetic moment. This leads to an oscillatory behavior of the RKKY-exchange interac-
tion. Depending on the distance between the localized magnetic electrons, their magnetic
coupling can be ferromagnetic or antiferromagnetic. The RKKY interaction works over
relatively large distances of a few nanometers. It can be used to couple magnetic layers
that are separated by a nonmagnetic spacer layer. As discussed in Sec. 2.12, this possi-
bility is of highest practical interest.
Itinerant exchange means exchange between itinerant electrons. In the ferromagnetic
transition metals Fe, Co, and Ni, the exchange interaction causes a spontaneous magne-
tization, i.e. a parallel alignment of spins over macroscopic regions or domains, even in
the absence of external magnetic fields. The main source of the spontaneous magnetiza-
tion in transition metals are the spin moments of partly occupied 3d states at the Fermi
energy that generate a sizeable magnetization at room temperature. A general theory of
ferromagnetic transition metals should describe simultaneously the characteristic electron
correlation effects that lead to the spontaneous magnetization, as well as the electronic
transport properties predicted by band theories [Sthr 06].2 The formulation of such a
theory is a topic of contemporary research in magnetism. Instead of such a theory, a
widely supported description is given by the Stoner model that is based on band theory
[Sthr 06]. This model assumes that an exchange interaction of 3d electrons generates an
exchange-energy splitting of the 3d bands. As the 3d bands are not fully occupied, the
exchange splitting increases the number of electrons in the energetically favored band,
and vice versa. The spin-polarized 3d bands give rise to a spontaneous magnetization
that is determined by the difference of the occupation numbers of both bands. Due to the
filling of the bands up to the Fermi surface the magnetic moment per atom is a noninteger
multiple of the Bohr magneton. Electrons with spin orientation antiparallel to the mag-
netization vector are called majority-spin electrons. The others are called minority-spin
electrons. In Fig. 2.1, the Stoner model is illustrated for Ni. The exchange interaction is
the strongest among the three magnetic interactions, because it arises from the Coulomb
interaction. In the 3d transition metals, the exchange energy is of the order of 1 eV.

1Named after the scientists involved in the discovery of this effect: Ruderman, Kittel, Kasuya, and Yosida.
2The behavior of electrons in solids has largely remained a mystery. One distinguishes two important
concepts: localized or correlated and independent, delocalized, itinerant, or band-like electron behavior
[Sthr 06]. Correlated electrons remain localized on different atomic sites due to dominating Coulomb
repulsion, whereas the wavefunctions of independent electrons in a solid are spread over the entire crystal.
Such delocalized electrons are itinerant and can be well described by band-theoretical models.
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Figure 2.1: Illustration of the spin-polarized 3d band of Ni in the Stoner model. Minority spins
point in the direction of the spontaneous magnetization. The bands are separated due to the
exchange energy splitting. Filled electron states below the Fermi energy EF are indicated by
the shaded area. This figure is based on Fig. 7.6 in Ref. [Sthr 06].

2.1.2 Spin-Orbit Interaction
The spin S of an electron couples with the orbital angular momentum L of the electron
to the total angular momentum J = S + L. This effect is described by the spin-orbit
Hamiltonian Hso, which follows from the relativistic Dirac equation [Sthr 06]:

Hso = ξ L·S, (2.1)

where ξ is the spin orbit coupling constant. In a crystal, electron orbitals are linked
to the lattice due to bonding with adjacent atoms, i.e. the orbital angular momentum
favors certain crystallographic directions. This anisotropy combined with the spin-orbit
interaction leads to the magnetocrystalline anisotropy in ferromagnetic materials. On the
other hand, the presence of a spontaneous magnetization coupled to the lattice breaks
the time-reversal symmetry and allows for a net orbital magnetization. Applied to 3d
orbitals of ferromagnetic transition metals with an energy splitting due to a ligand field
of cubic symmetry, the spin-orbit interaction generates mixing of states with the same
spin and mixing of states with opposite spin [Sthr 06]. It turns out that this intermixing
effect is anisotropic. We come back to this point in Sec. 2.10, where the anisotropic
magnetoresistance is discussed. The spin-orbit interaction energy in the 3d transition
metals is of the order of 10 to 100 meV.

2.1.3 Zeeman Interaction
The Zeeman interaction describes the coupling of angular momentum to an external
magnetic field H. The total angular momentum J = L+S generates a magnetic moment
m = −μB

�
(L+ 2S). The Zeeman Hamiltonian is given by [Sthr 06]

HZI =
μB

�
(L+ 2S)·H. (2.2)

In atoms, the Zeeman interaction lifts the degeneracy of electronic states. In ferromag-
netic materials, the Zeeman interaction allows for the alignment of magnetic domains by
applying magnetic fields.
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2.2 Boltzmann Equation and Relaxation-Time Approximation
A system of noninteracting identical fermions can be described using Fermi-Dirac stati-
stics. Application of Fermi-Dirac statistics to electrons in metals is known as the Som-
merfeld theory of metals. The average number of electrons in a single-particle state of
energy E at equilibrium is described by the Fermi-Dirac function

f0(E,T ) = 1
e(E−ζ)/kBT + 1 , (2.3)

where ζ is the chemical potential, which at T = 0 is equal to the Fermi energy. Within
the semi-classical transport theory, the nonequilibrium distribution function f is defined
to depend on the wave vector k, the spatial coordinate r, and the time t. To justify the
assumption of a classical position-momentum space, it is assumed that the chemical po-
tential and the temperature vary over a scale that is large compared to atomic dimensions.
The differential equation for f(k, r, t) is the Boltzmann equation, a continuity equation
for particle flow:

df(k, r, t)
dt

= ∂f(k, r, t)
∂t

+∇rf(k, r, t)dr
dt

+∇kf(k, r, t)dk
dt

=
(

∂f(k, r, t)
∂t

)
coll

, (2.4)

where the collision term on the right hand side contains the information about the mi-
croscopic scattering mechanisms. The linearized Boltzmann equation for steady-state
distribution functions (∂f

∂t
= 0) is obtained by replacing f with f0 in the left hand side

of Eq. (2.4). This is reasonable for weak external fields, so that the system is not too
far from equilibrium. The simplest approximation of the right hand side is the relaxation
time approximation. For this approach it is assumed that the collision term, which is
responsible for the system to approach thermal equilibrium, is proportional to the devi-
ation of the distribution function from its equilibrium value. The linearized Boltzmann
equation in the relaxation time approximation then reads [Uher 04]:

(
df0(k)

dE

)[
E(k)− ζ

T
∇rT +∇rζ − eE

]
v = −f(k,r)− f0(k)

τ(k) , (2.5)

where τ(k) is the relaxation time and E = �

e
dk
dt
the electrostatic field.3 The validity of the

relaxation-time approximation is a critical issue [Ashc 76]. Inelastic scattering processes
for example can be very effective in relaxing a thermal current without degrading an
electric current. As a consequence of the relaxation-time approximation, τ would be
different for heat- and charge-currents. Consequently, the interpretation of the relaxation
time as a measure of the time between two collisions is not valid anymore. Before we
come back to this point in Sec. 2.8, Eq. (2.5) is used to define the current densities that
are caused by an electric field and a temperature gradient.

3The effective field that drives the current is given by ε = E−∇rζ/e = −∇r(ϕ+ ζ/e) ≡ −∇rΦ/e, where
Φ = ζ + eϕ is the electrochemical potential. Throughout the text the elementary charge e is defined as
a parameter (compare Table 0.1), i.e. the charge of an electron is −e.
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2.3 Thermoelectric Effects
The nonequilibrium distribution described by Eq. (2.5) results in nonvanishing charge-
and heat-current densities that are given by

j(r) = 2e
V

∑
k
v(k)f(k,r), (2.6)

and
q(r) = 2

V

∑
k
v(k)(E(k)− ζ)f(k,r). (2.7)

Substituting Eq. (2.5) into Eqs. (2.6) and (2.7) results in a linear relation between the
external fields and their associated currents4 [Uher 04],

j(r) = e2K0E+ eK1

T
(−∇rT ), (2.8)

q(r) = eK1E+ K2

T
(−∇rT ), (2.9)

where the transport coefficients Kn are in general tensors:

Kn,(i,j) =
2
V

∑
k

vi(k)vj(k)[E(k)− ζ]nτ(k)
(
−df0(k)

dE

)
. (2.10)

For isotropic materials the tensors reduce to scalars. Assuming zero temperature gradient,
Eq. (2.8) reduces to the Ohm law:

j = e2K0E ≡ σE, (2.11)

where σ is the electrical conductivity. Under open-circuit conditions (j = 0), Eq. (2.8)
describes the generation of an electric field by a temperature gradient:

E = K−1
0 K1

eT
∇rT ≡ S ∇rT, (2.12)

where S is the Seebeck coefficient. An important application of this so-called Seebeck
effect is the thermocouple (see Fig. 2.2). The two legs of a thermocouple consist of two
materials with different Seebeck coefficients, SA and SB. According to Eq. (2.12), the
temperature difference across the legs of the thermocouple generates the voltage

Uac =
∫ b

a
SA∇rT dr+

∫ c

b
SB∇rT dr = (SA − SB)(T2 − T1), (2.13)

which can be used for temperature measurements (compare Fig. 2.2). In the absence of a
temperature gradient, it follows from Eqs. (2.8) and (2.9) that the heat current generated
by a voltage is proportional to the charge current:

q = K1K−1
0

e
j ≡ Π j, (2.14)

4In metals the chemical potential is not affected by the transport process and can be assumed constant,
i.e. ∇rζ = 0. This is because of their large carrier concentrations.
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Figure 2.2: Basic thermoelement that can be used to measure temperatures. The figure is
based on a public file [wwwc 08].

where Π is called the Peltier coefficient. A current that flows through a thermocouple is
accompanied by the evolution of heat at the junction of the two materials. This so-called
Peltier effect has its application in thermoelectric refrigeration.
The thermal conductivity is typically measured under open-circuit conditions (j = 0).
Then, substituting Eq. (2.12) into Eq. (2.9) yields

q = K2 −K1K−1
0 K1

T
(−∇rT ) ≡ κ(−∇rT ), (2.15)

where κ is the electronic thermal conductivity. For metals, the term K1K−1
0 K1 � K2 and

can therefore be neglected in Eq. (2.15).
Using Eqs. (2.8) and (2.9) the entropy current density s = q/T can be expressed in terms
of the current density and the temperature gradient:

s = K1K−1
0

eT
j+ K2 −K1K−1

0 K1

T 2 (−∇rT ). (2.16)

According to this equation, the Seebeck coefficient defined in Eq. (2.12) is equal to the
entropy per charge carried by a current in a conductor.

2.4 Thermoelectric Figure of Merit
It can be shown that both the power generation efficiency and the cooling coefficient of
performance of a thermoelement (see Fig. 2.2) are maximized by maximizing the figure
of merit [Nola 01]

ZT = (SA − SB)2(√
κAρA +

√
κBρB

)2 T, (2.17)

where ρ = 1/σ is the electrical resistivity. In typical applications, the absolute thermoelec-
tric properties of the two materials are similar, and Z approximately equals the average
of the individual figures of merit. Multiplied with the temperature, the dimensionless
individual figure of merit is defined to be

zT = S2

κρ
T = S2σ

κ
T. (2.18)


