
0 INTRODUCTION 9

Introduction

Urban traffic congestion is increasing day by day. Examples can be found around the
world. Growing cities and increasing population doubled the traffic volume in the last two
decades in Europe and North America and an even higher rise has to be expected for the
urban regions in Asia or South America in the next years. In Germany, the population
travels about 1000 billion kilometers every year, and 85 percent of this distance is covered
by individual motor car traffic [25, 56]. The city of São Paulo, Brazil, is famous for its
record-breaking traffic jams. The 20 million inhabitants own about six million vehicles.
On an evening in June 2009, the traffic congestion the city reached a new record of
293 kilometers in total [47]. In August 2010, there was a 60-mile, nine-day traffic jam
near Beijing, China, that even made headlines in Europe.

Traffic congestion causes delays which add up to huge costs for society and business.
The urban mobility report 2009 [136] states a total loss of 4.2 billion hours and
87.2 billion dollars for the 439 urban areas in the United States in only one year.
Wasted fuel of 2.8 billion gallons, noise, and pollution accumulate. A huge problem has
to be solved.

But what can mathematics do to support the quest for stress-free, environment-friendly,
and safe traveling? In this thesis we will have a close look at two familiar systems
for traffic control–guideposts and traffic signals. If you do not like traffic jams you are
invited to read on and find out how an optimization of guideposts and traffic signals can
be used to direct and improve inner-city traffic flow.

Guideposts. Guideposts have been used for a long time. They provide guidance, es-
pecially in unfamiliar regions. With increasing mobility, we cannot imagine traveling
without guideposts and we can find them everywhere. Even modern GPS-based satellite
navigation systems can be seen as small, virtual guideposts inside our cars. Everything
seems clear–just follow the guideposts!

But we missed an important question. Where should we install these guideposts? And
what consequences arise from our choice?

Assume we want to find a certain point of interest in an unfamiliar network. Fortu-
nately, this network is equipped with guidepost pointing towards our destination wher-
ever a routing decision has to be made. Further, we may assume that these guideposts
point in an unique direction, i.e. they exclude all but one road at each intersection.
Nothing would be more confusing than two guidepost naming the same destination but
pointing in two different directions. Most likely, other traffic participants with the same
destination will follow these guideposts, too. If we meet one of them, she will make
the same routing decisions just like us. Thus, we will travel on the same route until we
reach our destination. Consequently, a group of road users starting at the same origin
will share the same path, even if there would exist several alternatives. The capacity of
this path limits the amount of traffic participants that can reach the common destina-
tion. With road users starting all over the network, a bad choice of guideposts may lead
to congestion, although the traffic flow in the network is far away from the network’s

capacity at free route choice.

10

Traffic signals. With increasing car traffic, traffic signals managing the right of way at
intersections became more and more important. However, the red traffic light seems to
be dominant. But sometimes, we arrive at a traffic signal and it switches to green just
in time, so that we can go on without stopping. And once in a blue moon1, we get even
four or five green lights in a row.

Such a traffic signal coordination is a difficult task. Of course, coordinating one road
in one direction is rather easy, but with traffic in the opposite direction or traffic in a
whole street network it becomes considerably harder.

Even more, changing the coordination also means changing travel times. After a
while road users will learn about the fastest routes in the network and they will switch
to these routes. This new distribution of traffic in the network may completely disturb
our fine-tuned coordination.

Obviously, guideposts and traffic signals are important tools for controlling traffic and
traffic control is the backbone in the management of traffic flows in our cities. The
optimal use of these signals is essential when we are going to resolve traffic congestion.
However, it is sometimes not even clear what ‘optimal’ means in this context. Guide-
posts are often installed with respect to the shortest distance towards the destination.
Their influence on congestion is poorly studied. In contrast, traffic signal coordination
has been investigated for a long time and many approaches and models have been pro-
posed. But these models also recommend various definitions of optimality. The two
most common objectives are minimizing the delay/waiting time of vehicles facing red
lights and minimizing the number of stops. Furthermore, the majority of the approaches
reveal some deficits like unrealistic modeling of inner-city traffic flows or no guarantee
for an optimal solution.

Contribution

In this thesis, we tackle traffic congestion with the help of network flow theory from
two sides. First, we advance guideposts from a theoretical point of view and introduce
confluent flows. A flow is called confluent if the flow uses at most one outgoing arc at
each node. Unlike previous results we consider heterogeneous arc capacities. We will
focus on NP-hardness results for maximum confluent flows, an approximation algorithm
for graphs with treewidth bounded by a constant k, and polynomial time-algorithms for
special graph classes.

Second, we advance traffic signals. Since this discussion is actually a practical one –
most results presented in this part are an outcome of the ADVEST project that emerged

1A blue moon refers to the third full moon in a season with four full moons. A season with four full
moons is very rare, this happens only once every 2 or 3 years.

0 INTRODUCTION 11

between BTU Cottbus, TU Berlin, TU Braunschweig, and PTV AG2 – we start our
contribution with a new model for the simultaneous optimization of traffic signal coordi-
nation and traffic assignment. This combined approach accounts the feedback between
red lights and route choices. We answer the time dependance of traffic signals by a
cyclically time-expanded network. This time expansion will also allow capturing several
other characteristics of inner-city traffic like platoons of cars and exact arrival times of
these platoons at the intersections. Still, viewing inner-city traffic as a periodic process
limits the time horizon of the expansion and leads to a compact formulation of the prob-
lem as a mixed-integer program. Solving the MIP yields a guarantee or at least bounds
for the optimal solution. We investigate our approach with the help of real-world data
and state-of-the-art simulation tools.

Outline of the thesis

In Chapter 1 we will fix the notation and terminology and present basic definitions.
We assume the reader to be familiar with the basic concepts in graph theory, complexity
theory as well as linear programming. However, for later reference and as a short refresh-
ing of knowledge we recall some of the most important facts. For additional information
we refer to [2, 66, 100, 122, 147].

In Chapter 2 we will derive the concept for flows in networks with guideposts. For
that, we will introduce confluent flows and conclude some basic properties, e.g. the
underlying tree structure. We will study complexity result for both the transshipment
and the maximum flow variant. We also present arc-confluent flows and discuss cuts for
confluent flows.

Afterwards, we present polynomial time algorithms for restricted graph classes,
e.g. trees, planar graphs with at most k terminals on the boundary, and graphs with-
out K2,3 as a minor in Chapter 3. The relation between confluent flows and trees will
lead to a pseudo-polynomial time solution for maximum confluent flows on graphs with
treewidth bounded by a constant k. We use this result to develop a fully polynomial time
approximation scheme (FPTAS) for confluent flows on this kind of graphs.

Due to the various approaches for traffic signal optimization we start with a short
survey on this topic in Chapter 4. We will use this survey to make the reader familiar
with concepts in traffic engineering and with terms related to traffic signals. We will
also discuss the advantages and disadvantages of the considered approaches to motivate
our new model. Herewith, the ground for the next two chapters should be prepared.
Additional information can be found, e.g., in [69, 141].

In Chapter 5 we use the concept of dynamic flows and the periodicity of traffic signals
to develop a cyclically time-expanded network. The model is completed by modeling
intersections, traffic signals and traffic assignment. As a main result of this chapter
we show how this model can be used to optimize traffic signal coordination and traffic
assignment simultaneously. Aiming for a realistic modeling we also discuss the conse-

2PTV AG is a traffic planning company from Karlsruhe, Germany. It is well known for its traffic
planning and simulation software VISUM and VISSIM.

12

quences of our approach to travel times and link performance in detail and derive further
properties of the model.

Finally, Chapter 6 is designated for the simulation of inner-city traffic and the practi-
cal evaluation of the proposed model. We introduce the reader to two traffic simulation
tools, namely VISSIM and MATSim. In detail, we consider the real-world inner-city
networks of Cottbus, Braunschweig, Portland, and Denver. In particular, we empha-
size the advantages of our simultaneous optimization of signal coordination and traffic
assignment by comparing to a decomposed successive version of our approach.

About this thesis

A lot of results in this thesis were obtained during the ADVEST project, granted
by the German ministry of education and research (BMBF). This also reflects in the
thesis. First, some results were already published, see [53, 52, 98, 96, 97]. Second, the
aims of the project lead to different kinds of results. On the one hand confluent flows
were studied theoretically and are better understood now. But due to the combinatorial
complexity practical applicability is – in the moment – poor. One the other hand, in a
more experimental approach, a new model for simultaneous traffic signal coordination
and traffic assignment was created, implemented, improved and tested with help of
simulation tools. Hereby, a model of high practicability was developed, but it is difficult
to prove the impact of the model also mathematically. Hence, the first part of the thesis
will perhaps be more interesting for readers who focus on combinatorial optimization.
The second part may more appeal to readers who are interested in the modeling of real
world problems.

1 BASIC DEFINITIONS AND NOTATION 13

1 Basic Definitions and Notation

In this chapter we introduce and fix the basic notation for this thesis. Many fields of
discrete mathematics are touched. First, we introduce the graph notation and we present
some classical graph problems that we will refer to later. Due to the wide area of graph
theory this description cannot be complete. For an introduction to graph theory we
suggest, e.g., [152] or [49]. A good textbook on network flows is, for example, [2]. Good
textbooks, covering network flows and other combinatorial optimization strategies, are
[36, 100, 138]

Furthermore, we fix the notations for algorithms, complexity and approximation.
Again, we can only give a short overview. For additional information, we refer to [66]
and [9].

Linear Programming and Integer Programming are two basic approaches to solve
network flow problems and combinatorial optimization problems. We will introduce
both techniques in section 1.4 and suggest [147, 153] for further reading.

Please note that the following chapters also provide their own introductions and terms
specific to these chapters are defined there.

1.1 Graphs

In this work we consider finite graphs G = (V,E) where V = V (G) is the vertex set
and elements v ∈ V are called vertices or nodes. E = E(G) is the edge set of G. We
consider both undirected and directed graphs (digraphs). In the case of undirected, loop
free graphs the edge set is a subset of V 2, i.e. E ⊆ {{u, v} : u, v ∈ V, u �= v}.

To denote directed edges, we also call them arcs. E is termed arc set A. A consists
of ordered pairs of nodes, i.e. A ⊆ V × V = {(u, v) : u, v ∈ V }. Therefore, each arc
a ∈ A, a = (u, v) is directed from its tail(a) = u to its head(a) = v. For v ∈ V , we use
δ−(v) = {a ∈ A : v = head(a)} for the set of incoming arcs and δ+(v) = {a ∈ A : v =
tail(a)} for the set of outgoing arcs. A graph is called bi-directed if it contains for each
arc a = (u, v) also the arc in the opposite direction a′ = (v, u). A directed graph can be
made undirected by simply deleting the directions of the arcs. To make an (undirected)
graph a bi-directed one we add both directions for each edge/arc.

The cardinalities of the node and edge sets are denoted by n = |V | and m = |E|. A
graph with n vertices that contains all possible edges, is called a complete graph and
denoted by Kn. Obviously, the complete graph has m =

(
n
2

)
= n(n−1)

2 edges. Sometimes,
a graph is allowed to contain multi-edges, i.e., parallel edges. Hence, E, or A respectively,
is defined as a multi-set in this case and G is called multi-graph. The induced subgraph
on a vertex set V ′ ⊆ V is denoted by G[V ′]. The induced arc set of G[V ′] is denoted by
A[V ′].

A sequence W = (a1, . . . , ak), ai ∈ A, of arcs is called a walk if it fits head to tail,
i.e. head(ai) = tail(ai+1) ∀i ∈ {1, . . . , k − 1}. For short, we will use tail(W) := tail(a1)
and head(W) := head(ak). V [W] is used for the set of vertices that occur in the arcs
of W . To simplify matters, we use a ∈ W to denote that the arc a is contained in the
sequence of arcs in walk W . A path P is a walk which passes through every vertex at

14 1.2 Flows and Networks

most once. A walk/path where the tail of the first arc and the head of the last arc
coincide is called cycle/circuit . For u, v ∈ V , Pu,v denotes the set of all paths with tail u
and head v. The length of a path (with respect to unit edge lengths) is the number of arcs
in its sequence. Two paths P1 and P2 are (arc) disjoint if A[V [P1]]∩A[V [P2]] = ∅. They
are node disjoint if V [P1] ∩ V [P2] = ∅. The composition of two paths P1 = (a1, . . . , ak)
and P2 = (b1, . . . , bl) is defined as P1 ◦ P2 = (a1, . . . , ak, b1, . . . , bl).

Similarly, walks, paths, cycles, and circuits can be defined for undirected graphs.

A graph is strongly connected if for each pair of vertices (u, v) there exists a path P
from u to v, i.e. tail(P) = u and head(P) = v. A graph is weakly connected if its corre-
sponding bi-directed graph is strongly connected. A node set U ⊆ V is (strongly/weakly)
connected if the induced graph G[U] is (strongly/weakly) connected. The inclusion max-
imal (strongly/weakly) connected subgraphs of G are called (strongly/weakly) connected
components.

A cut in G is an arc set C such that G\C = (V,A\C) has at least one connected
component more than G. The value of a cut is simply the number of arcs in the cut.
An s-t-cut is defined as a partition of V into two subsets C1 and C2, such that s ∈ C1

and t ∈ C2. Let C = {a ∈ A : tail(a) ∈ C1 ∧ head(a) ∈ C2} then there exists no directed
path from s to t in G\C. The value of the s-t-cut is |C|, i.e. the number of forward arcs
from C1 to C2.

1.2 Flows and Networks

Flows have been a major planning tool for many applications ever since Ford and Fulk-
erson [58] studied them. Before considering flows with additional routing constraints in
the following sections, standard flow is introduced here.

1.2.1 Definitions

Although there is consens what a flow in a network should be, we will use a slightly
different and modular approach for defining flows3.

A flow function is a non-negative function on the arc set x : A → R+
0 . In most

practical applications the maximal flow on each arc is limited by a capacity bound, i.e.,
a maximal flow value that cannot be exceeded on this arc. The capacities are given by
a function u : A → R+

0 ∪ {∞}. A flow is feasible if 0 ≤ x(e) ≤ u(e) ∀e ∈ A holds.
A graph together with capacities is called a network G = (V,A, u). For some results
in this thesis, we will limit the capacity function to integer values, i.e., u : A → N0.
This is no restriction for most applications, since rational values can simply be scaled to
integer values and irrational numbers cannot exactly be represented in our computers
anyway4.Furthermore, a flow function is integral if it has only integral values.

3In some of the algorithms especially in Section 3, we will not be able to fulfill all requirements of a
flow at once. A modular definition admits step-by-step procedures. For example, we will define and
derive preflows with a slightly different flow conservation constraint.

4Irrational input may yield a unexpected behavior, the algorithm of Ford and Fulkerson is a prime
example.

1 BASIC DEFINITIONS AND NOTATION 15

The inflow and outflow of a flow function x at a given node v are

inflowx(v) :=
∑

a∈δ−(v)

x(a)

outflowx(v) :=
∑

a∈δ+(v)

x(a)

and the balance of a flow function x at a node v is defined as net flow out of this node

balx(v) := outflowx(v)− inflowx(v).

We can now distinguish between three kinds of nodes. At some nodes v ∈ V flow may
enter into the network, i.e., the outflow is higher than the inflow. Therefore, these nodes
have positive balance and we call them sources. The set of all sources is denoted S+.
At other nodes, the balance may be negative and flow may leave the network. These
nodes are called sinks and the set of all sinks is accordingly denoted S−. All nodes in
S+ and S− are also called terminals and we demand S+ ∩ S− = ∅. For all other nodes
v we require that x satisfies the flow conservation constraint, i.e., balx(v) = 0.

Definition 1.1 (Flow). A flow in a network G = (V,A, u) with sources S+ and sinks
S− is a feasible flow function x : A→ R+

0 that

1. satisfies the flow conservation at all non-terminals,

2. has non-negative balance at all sources,

3. has non-positive balance at all sinks.

An s-t-flow is a flow with a single source s ∈ V and a single sink t ∈ V . A circulation
is a flow where balx(v) = 0 holds for all v ∈ V and thus, there are no sources or sinks.

The value of a flow x is the amount of flow reaching the sinks, i.e.,

val(x) = −
∑

v∈S−

balx(v).

This is equal to val(x) =
∑

v∈S+ balx(v) due to flow conservation at the non-terminals.
For most applications we need to restrict the balances of the terminals. We use a
supply/demand function d : V → R. All sources have positive values d(v) > 0, while
all sinks have negative values d(v) < 0. For non-terminals we require d(v) = 0. When
we talk about the supply of a source or the demand of a sink this refers to the absolute
values of the supply/demand function.

We can now study two variants of flow problems. In the case of a transshipment the
supplies and demands should exactly be satisfied. This means balx(v) = d(v) ∀v ∈ V .
Of course, this can only be achieved if

∑
v∈V d(v) = 0. In a weaker variant a source s

may send up to d(s) and a sink t can accept up to d(t) units of flow. A flow obeys the
supply/demand function if 0 ≤ balx(v)d(v) ≤ d(v)2 ∀v ∈ V .

These two variants lead to two problems.

16 1.2 Flows and Networks

Problem 1.2. Consider a network G = (V,A, u) with sources S+, sinks S−, and a
matching supply/demand function d.

1. Is there a flow x that satisfies d? (Transshipment Problem)

2. What is the maximum value of a flow x obeying d? (Max Flow)

Note that both problems can also be formulated as a circulation problem. In many
problems one can typically add a supersource s∗ and a supersink t∗ without changing the
problem. More precisely, one connects the supersource with all sources, i.e., one adds
the arcs (s∗, s) ∀s ∈ S+ with capacities u((s∗, s)) = d(s). Respectively, the same is done
for the supersink with arcs (s, t∗) ∀s ∈ S− with capacities u((s, t∗) = −d(s). Connecting
supersink and supersource as well, we require x((t∗, s∗)) =

∑
v∈S+ d(v) for the transship-

ment or we try to maximize x((t∗, s∗)) for a maximum circulation. Furthermore, flow
conservation applies in every node.

This general definition of flows can be extended by adding costs to each arc, i.e., there
is another function c : A → R+

0 . These arc costs can be interpreted as the length of
an arc or a toll that has to be paid for using this arc. The total cost of flow on an arc
e is f(e)c(e) and the total cost of a flow in a network is given by

∑
e∈A c(e)f(e). We

can now vary the above flow problems by adding an additional constraint, which limits
the overall costs of a flow. Or we can look for the cheapest flow among all flows with
maximum flow value.

Problem 1.3. Consider a network G = (V,A, u) with sources S+, sinks S−, a matching
supply/demand function d, and a cost function c.

1. What is the minimum cost of a transshipment? (Min Cost Transshipment)

2. What is the minimum cost of a maximum flow? (Min Cost Flow)

One can also think of negative costs, i.e., getting money for using an arc. But this
complicates the computation of shortest paths and Min Cost Flow. Shortest paths
can have negative infinite length if the graph contains a cycle with negative cost sum.
On the other hand a minimum circulation can be used to calculate a Max Flow.
Just add supersource and supersink as above with c((t∗, s∗)) = −1, and all other costs
c(e) = 0, e �= (t∗, s∗).

Up to now, we considered only homogeneous flows. In many applications one has
to deal with several goods with different origins and destinations in the same network.
This can be modeled by multicommodity flows. For each commodity i, i ∈ {1, . . . , N}
we implement a separate flow function xi : A → R+

0 . We require flow conservation
as above for each flow xi. The capacity of an arc is shared among the commodities,∑N

i=1 xi(e) ≤ u(e) ∀e ∈ A. All problems given above can be formulated in a multi-
commodity variant [2].

1.2.2 Important results

In 1927, Menger presented his famous result which shows the relationship between dis-
joint paths and cuts.

1 BASIC DEFINITIONS AND NOTATION 17

Theorem 1.4 (Menger, 1927). Let G = (V,A) be a graph and s, t ∈ V . The maximum
number of edge disjoint paths from s to t is equal to the minimum value of an s-t-cut.

Introducing arc weights, i.e. arc capacities, this result can be extended to flows.
Hereby, the capacity of an s-t-cut is

∑
e∈C ue where C is the set of forward arcs from

C1 � s to C2 � t.

Theorem 1.5 (Maximum-flow Minimum-cut). The maximum value of an s-t-flow
is equal to the minimum capacity of an s-t-cut.

This theorem was proven by P. Elias, A. Feinstein, and C.E. Shannon in 1956, and
independently also by L.R. Ford, Jr. and D.R. Fulkerson in the same year.

Several algorithms for finding a maximum s-t-flow have been developed since the
1950s. To name a few approaches, Ford and Fulkerson constructed an algorithm that
is related to their constructive proof of the maximum-flow minimum-cut theorem. This
algorithm uses augmenting paths and was improved by Dinic and by Edmonds and Karp.
Goldberg and Tarjan presented a push-relabel-algorithm, which was improved by Ahuja
and Orlin. Note that, despite the bunch of combinatorial algorithms for s-t-flows, no
exact combinatorial algorithm is known for multicommodity flows, yet.

The successively increasing flow value in the algorithm of Ford and Fulkerson also
leads to an important observation.

Corollary 1.6 (Integrality theorem). If the capacity function u is integral, there
exists an integral maximum flow.

Note that this result is not true for multicommodity flows.

There is also another important link between flows and paths. Let x be an s-t-flow
in a network G = (V,A, u) with s, t ∈ V . Then there exists up to m = |A| s-t-paths
or cycles, such that x can be represented as a nonnegative linear combination of these
paths or cycles. Moreover, if x is integral, the linear combination can be realized with
integral coefficients. This result is also known as path decomposition.

1.3 Algorithms and Complexity

In the previous section we just mentioned some algorithms for maximum flows and many
more algorithms for restricted flows will follow in this thesis. But when talking about
algorithms, we have to discuss running times and complexity . Again, we can only provide
an overview.

An algorithm is a finite list of instructions. These instructions perform operations on
the given data, but they need not be performed in linear order. Each instruction also
determines which instruction is next or may even stop the algorithm. Therefore, the
algorithm itself is fixed, but the input data may vary.

Obviously, the running time of an algorithm may depend on the size of the input.
We will not discuss memory models or machine models here. For a detailed survey on
deterministic Turing machines see [66].

18 1.3 Algorithms and Complexity

For short, we measure the size of the input data as its lengths in some binary encoding.
The running time of an algorithm is measured in the number of elementary arithmetic
operations (addition, subtraction, multiplication, division, comparison), that are per-
formed until the algorithm stops. Even inputs of the same size may lead to different
behavior of the algorithm. Considering the worst case, the time complexity function for
an algorithm is the largest amount of time for each possible input length, that is needed
by the algorithm to solve an instance of this size.

1.3.1 Polynomial-time algorithms

If the number of elementary operations is bounded by a polynomial in the input size, the
algorithm is called polynomial-time algorithm or efficient algorithm. We can describe
the running time of an algorithm with help of the O-notation. A function f(n) is in
O(g(n)) if there exists a constant factor c and n0 ∈ N such that |f(n)| ≤ c|g(n)| ∀n ≥ n0.
Therefore, an algorithm is efficient, if its time complexity function is in O(p(n)) for a
polynomial p and input length n.

To simplify matters we do not measure the size of a graph or network in some binary
encoding. The size of a graph depends on the number n of nodes and the number m of
edges/arcs. Therefore, the input size for graph related problems is in most cases n+m.

With help of this notation, we can now compare algorithms. For example, the algo-
rithm for Max Flow from Edmonds and Karp with shortest augmenting paths has a
time complexity of O(nm2), while the algorithm from Goldberg and Tarjan has time
complexity O(nm log(n2/m)). Remember that m < n2.

Note that huge constant factors are maybe ignored in this run time analysis. Also,
the running time may depend on some additional implementation tricks. The popular
Dijkstra’s algorithm for shortest path calculation (cf. [50]) can simply be implemented
with a time complexity of O(n2). Using a more sophisticated data structure, namely
Fibonacci heaps, the time complexity can be reduced to O(n log n+m) [2].

Sometimes, an input value itself appears in the running time of an algorithm instead
of its logarithm (its size). If the complexity bound is also a polynomial of this parameter,
the algorithm is called pseudo-polynomial .

For other problems, it is useful to describe the input with several parameters. This
allows a finer analysis of their inherent complexity. Not only the size of the input data
influences the running time of the algorithm, but the structure of the data may be
important as well. Therefore, for some hard problems one can compute an answer in
a time that is polynomial in the size of the input and exponential in a parameter k.
If k is small and fixed, then such problems can still be considered manageable. The
corresponding algorithms are called fixed-parameter tractable.

1.3.2 P, NP, and co-NP
For some problems one has not found polynomial time algorithms yet. This leads to the
question whether some problems are harder than other problems. The classes P, NP,
and co-NP are collections of decision problems. A decision problem is a problem that

1 BASIC DEFINITIONS AND NOTATION 19

can be answered by Yes or No. More precisely, we consider a finite alphabet Σ and the
set Σ∗ of all finite words of letters from Σ. A problem Π is an arbitrary subset of Σ∗.
For a given x ∈ Σ∗ we have to decide whether x ∈ Π.

Problems in P are considered to be ‘easy’ problems, because they can be solved on a
deterministic Turing machine in polynomial time with respect to the length of the input.

A problem is in NP when it can be answered on a nondeterministic Turing machine
in polynomial time. Clearly, P ⊆ NP. An equivalent definition for NP requires that
a given certificate (Yes-solution) can be verified on a deterministic Turing machine
in polynomial time. For example, it is hard to decide whether a graph contains a
Hamiltonian circuit, i.e., a cycle that visits all nodes exactly once. But when a cycle is
given, it is easy to check, whether it is a Hamiltonian circuit.

A problem is in co-NP when its complement is in NP. It holds P ⊆ NP ∩ co-NP.
But it is an open problem whether P = NP or P �= NP. Assuming the second case
holds, NP-hard problems are not solvable in an acceptable time.

1.3.3 NP-complete problems

A problem in NP is said to be NP-complete if each problem in NP can be reduced
to this problem. Hereby, a reduction is a polynomial time algorithm that transforms a
problem into another problem such that both problems have the same answer. Hence,
NP-complete problems are also referred as the hardest problems in NP. A problem is
NP-hard if and only if there is an NP-complete problem that is reducible in polynomial
time to this problem. In other words, a problem is NP-hard when it is at least as hard
as the hardest problems in NP. Note that an NP-hard problem needs not to be in
NP. It could be even harder, undecidable or it may not even be a decision problem.
This notation dates back to Cook, who proved that there exists a formal language
with NP-complete problems [35]. Building on that, Karp [85] showed for 21 popular
combinatorial problems (e.g. the Travelling Salesman Problem (TSP)) that they
are NP-complete.

1.3.4 Complexity of optimization problems

We defined complexity for decision problems, i.e., problems with a Yes or No answer.
But in most problems introduced up to now like Max Flow or Min Cost Flow, we
are looking for a minimum or maximum of some objective.

Assume, we minimize a function f(x) over x ∈ X. We consider the following decision
problem:

Given a value v, is there an x ∈ X with f(x) < v?

We perform a binary search to find the optimal value v. If we have an upper bound
on the size of the optimal solution and a polynomial time algorithm for the decision
problem, this usually yields a polynomial time algorithm for the optimization problem.
On the other hand, if an optimization problem has an NP-complete decision version,
then it is NP-hard.

20 1.4 Linear Programming and Integer Programming

1.3.5 Approximation

Many practical optimization problems are NP-hard problems. Theory states that most
real world instances of such problems cannot be solved exactly in an acceptable time,
assuming P �= NP. But on the other hand, this is not necessary for a lot of applications
and an exact solution is of limited use when, e.g., the input data is noisy. In this case a
reasonable good solution near to the optimum is sufficient.

A p-approximation algorithm is an algorithm that runs in polynomial time and cal-
culates a solution that is at most a factor p away from the optimum. The factor p
is called the performance ratio of the approximation. Obviously, to performance ratio
for a maximization algorithm is less than 1, while it is greater than 1 for minimization
problems.

If we can find polynomial time approximation algorithms with a performance ratio of
p = (1 + ε) for minimization problems or p = (1 − ε) for maximization problems ∀ε ∈
(0, 1), we call the family {Aε}0<ε<1 a polynomial time approximation scheme (PTAS).
Furthermore, when each algorithm Aε in this family has a running time polynomial in
the input size and polynomial in 1/ε we call the family {Aε}0<ε<1 a fully polynomial
time approximation scheme (FPTAS).

Approximation algorithms are not only used for hard problems. For example, there
exist combinatorial approximation algorithms for Multicommodity Flow (see, e.g.,
[67]).

1.4 Linear Programming and Integer Programming

1.4.1 Linear programs

Linear programming (LP) is a powerful optimization tool, which we will also use in this
thesis. Again, we can only sketch the main ideas here. Fortunately, there exist very
good text books and we recommend, e.g., [147, 153].

Whenever we can formulate a problem in the form

min cTx

s. t. Ax ≤ b

x ∈ Qn

with the objective cTx (c ∈ Qn), and some constraints Ax ≤ b (A ∈ Qm×n, b ∈ Qm)
linear programming is an alternative option to solve this problem. For example, the
Max Flow problem can be formulated as a linear program. For simplicity, we assume
a single source s and a single sink t with infinite capacities:

1 BASIC DEFINITIONS AND NOTATION 21

max
∑

e=(s,v)

x(e)−
∑

e=(v,s)

x(e) (1)

s. t. u(e)− x(e) ≥ 0 ∀e ∈ A (2)
∑

e=(u,v)

x(e)−
∑

e=(v,w)

x(e) = 0 ∀v ∈ V \{s, t} (3)

x(e) ≥ 0 (4)

Hereby, the objective (1) is the outgoing flow of the source. The constraints (2) ensure
the capacity bounds. The flow conservation is formulated in (3), i.e., the balance is equal
to zero. Of course, all flow values have to be non-negative (4).

Linear programs can be solved by the simplex algorithm, presented by Dantzig [44] in
1947. Despite the simplex algorithm has no polynomial running time in theory, it works
well in practice.

In 1979, Khachiyan proved that linear programs can be solved in polynomial time with
the ellipsoid method [87]. Therefore, whenever we can formulate a problem Π as a linear
program, and this formulation is polynomial in time and size of the original problem,
this proves that Π is in P. For example, no combinatorial algorithm is known for the
Multicommodity Flow problem. But it is easy to formulate this problem as a linear
program similar to the formulation of Max Flow above. Hence, Multicommodity

Flow is in P.
Interestingly, the ellipsoid method is inefficient in practice. Today, most solvers for

LP also use interior points methods, introduced by Karmarkar [84] in 1984, which are
efficient in theory and practice.

The existence of a dual program is an important property of linear programs. As
a consequence of Farkas’ lemma, each linear program has a dual linear programming
formulation and both problems have the same optimal objective value [147]. For example,
the path based Max Flow can be formulated as linear program as follows:

max
∑

P∈Ps,t

xP

s. t.
∑

P :e∈P

xP ≤ u(e) ∀e ∈ A

xp ≥ 0 ∀P ∈ P

Note that the set Ps,t is very large in general. It is not a good idea to list all paths
between two nodes. However, this formulation is very useful when only considering a
rather small set of active paths. This can be achieved, e.g., by a column generation
approach. The dual formulation is:

22 1.4 Linear Programming and Integer Programming

min
∑

e∈A

yeu(e)

s. t.
∑

e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

It is not obvious that this dual linear program always has an optimal solution with
integer values for ye. One will need a result concerning total unimodular matrices to
prove this. So, assume, we have found this integer solution. This optimal solution of
the dual determines a minimum s-t-cut in the graph, i.e., the set of arcs in the cut
is {e : ye = 1}. All paths between s and t are cancelled by deleting this set of arcs.
Furthermore, the objective is the weighted sum over this set of arcs.

Solving primal and dual LP simultaneously yields bounds for the optimal solution.
Furthermore, if both solutions have equal value, then optimality is proved.

1.4.2 Integer programs

If some of the variables have to be integral, finding an optimal solution is much harder.
Simply dropping the integrality constraints and rounding does not need to yield good
solutions in general. In fact, a special case, the decision version of an integer program
with binary variables, is one of Karp’s 21 NP-complete problems.

Integer Programming and Mixed Integer Programming are based on linear program-
ming, but they use various strategies to handle integrality constraints. Typically, one
solves the relaxation of the problem, i.e., the integrality constraints are dropped. If
the solution is not integral, the problem is modified and solved again. These modifica-
tions include adding new constraints or splitting the problem. Two strategies are briefly
introduced here. For further reading, we recommend [153].

Cutting plane methods This method was first used by Dantzig et al. [45] to solve an
instance of the Travelling Salesman Problem, containing 49 major cities in the
United States. Gomory [70] generalized this approach to arbitrary integer programs.
A cutting plane is an additional constraint that refines the relaxation of an integer
program. If the optimal solution of the relaxation is not integral, then there exists a
linear inequality separating the optimum from the integer feasible set. This inequality
can be added to the relaxation. Obviously, the current optimum is no longer feasible.
This process is repeated until an optimal integer solution is found.

Branch&Bound The branch&bound method was introduced by Land and Doig [104].
This enhanced enumeration method consists of two steps. In the branching step the
problem is split into two smaller problems. For example, assume the value of a variable
x is not integral in the optimal solution, i.e. x = r and r �∈ Z. We may now consider
two new problems:

1 BASIC DEFINITIONS AND NOTATION 23

• one with the additional constraint x ≤ �r�
• the other one with the additional constraint x ≥ �r�

Obviously, the union of these two sub-problems is the original problem. Now, a recursive
branching is executed. In each step, a new variable and a new threshold is chosen,
depending on the branch in the last step. In the bounding step upper and lower bounds
for each sub-problem are calculated. If we consider a minimization problem and a lower
bound of some sub-problem X is greater than the upper bound of another sub-problem
Y , then X can be safely discarded from the branching (pruning), since Y will always
yield better solutions. Again, this is repeated until an optimal integer solution is found.

