
Chapter 1

INTRODUCTION

This work is dedicated to a - in general mostly unwanted - dynamic fluid behavior that is

typically known as liquid sloshing. There exist many applications in civil and industrial engi-

neering, in which this effect is of major interest. Frequently, liquid sloshing has been studied by

designers of road and ship tankers as well as by geologists and architects to study its impact.

Examples include large dam walls affected by underground motion and large liquid containers

mounted on top of multistory buildings used as earthquake protection systems. Furthermore,

the field of applications is enhanced by the aerospace industry where the understanding of liquid

sloshing is of fundamental importance to design appropriate propellant tanks for spacecrafts.

Liquid sloshing is defined as more or less periodical motion of the free liquid surface inside a

closed reservoir1. It is provoked by any disturbances such as vibrations, acceleration changes

or rolling and pitching movements of the tank. Depending on the excitation, this can cause

different types of liquid motion including symmetric, asymmetric, swirling and chaotic sloshing

modes.

This chapter starts with a compact review of the past. Afterwards, the application of cryogenic

propellants including the risks compared to the utilization of storable liquids is discussed. The

central part of this chapter deals with the principle question that shall be answered by this

work. Furthermore, the state of the art related to cryogenic liquid sloshing is presented before

the chapter closes with the motivation and the objectives for this work.

For centuries, one dream of Humankind is the exploration of the space - leaving Earth’s atmo-

sphere and beyond. Long before aeronautics and astronautics could be established as technical

applications, these partially dreamy issues were primarily discussed by philosophers and litter-

ateurs who cast their utopistic ideas into techno-romantic tales trying to influence the modern

age world view. Well known ambassadors of this movement are Leonardo da Vinci, Gior-

dano Bruno, Johannes Kepler, and Jules Verne, to name only a few of them. An

example is provided in figure 1.1 showing the attempt to reach the moon by using a large gun

bullet.

1Sloshing affects the liquid of a certain distance below the surface as well.
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2 INTRODUCTION

Figure 1.1: The shot to the Moon taken from the novel From the Earth to the Moon by Jules
Verne written in 1865. The illustrations are taken from [56].

Driven by the cold war, space flights became of major interest during the 1950’s and 1960’s,

when American and Soviet space programs were strongly supported by their governments,

focusing on the manned exploration of Earth’s orbit and the Moon. Highlights in this age were

the first artificial earth satellite Sputnik launched by the USSR, the first manned space flight

by Yuri Gagarin, and the American Apollo program to perform the first manned landing

on the Moon. Later, in the 1980’s and 1990’s, the reusable Space Shuttle and the International

Space Station (ISS) shaped the face of modern astronautics. For unmanned missions, the

European space launcher Ariane 5 advanced as one of the most successful carrier systems for

satellite shipment into Earth’s orbit.

Beating Earth’s gravity field to reach the orbital position defines the main task of any launcher

system that has been employed or will be designed in future. According to Newtons third

law of motion, a rocket works on the principle providing a continuous ejection of hot gases in

one direction to cause a thrust Ft and therefore a steady acceleration in the opposite direction.

Thus, the momentum balance of the rocket must satisfy

d Itot
dt

=
d Ir
dt

+
d It
dt

(1.1)

where Itot gives the total momentum. On the one side, the momentum of the rocket is defined

as

Ir (t) = mr (t) Δur (t) . (1.2)

Here, mr is the actual rocket mass including the varying propellant mass and Δur is the change

in rocket velocity. With the effective exhaust velocity uex, equation (1.2) gives in scalar notation
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Table 1.1: The specific momentum Is of actual and outdated launcher systems [18, 44].

launcher stage/engine propellant kind Is [s]

Saturn V F-1 LOX/RP-1 semi-cryogenic 265

J-2 LOX/LH2 cryogenic 424

Ariane 4 (AR44 LP) 2 UH25/N2O4 storable 294

3 LOX/LH2 cryogenic 444

Ariane 5 EPS N2O4/MMH storable 231

ESC-A LOX/LH2 cryogenic 447

Space Shuttle SRB Al/NH4ClO4 solid 295

SSME LOX/LH2 cryogenic 455

−uex dmr

dt
= mr

dur
dt

(1.3)

leading to the well known Ziolkowky rocket equation

Δu12 = uex ln

[
m0

m1

]
(1.4)

where the initial total mass is denoted as m0 and the final total mass is defined as m1.

On the other side, the momentum emerging from the engine thrust Ft = ve ṁp is defined as

It (t) =

∫ t

0

Ft dt. (1.5)

According to equation (1.1), an payload extension requires a more powerful thrust provided by

the engine. However, the specific momentum is a convenient measure to gauge the efficiency of

rocket propellants. The specific momentum is defined as propellant weight related thrust, so

that

Is =
|It|

az
∫ t

0
ṁp dt

(1.6)

where az = g is the gravitational acceleration on Earth and ṁp is the actual propellant mass

flow rate of the rocket. Although the specific momentum is a characteristic of the propellant

system, its exact value will vary to some extent with the operating conditions and design of the

rocket engine. The higher the specific momentum, the more energy is stored in the propellant

and therefore the more payload can be carried by the launcher. For constant thrust and constant

propellant flow, equation (1.6) simplifies yielding

Is =
|Ft|
g ṁp

. (1.7)
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Figure 1.2: (A) The European space launcher Ariane 5 (illustration is provided by ESA).
(B) Tank configuration of the cryogenic upper stage ESC-A [17] including the reservoirs for
liquid hydrogen (LH2), liquid oxygen (LOX) and gaseous helium (GHe).

For the general consideration of rocket propulsion systems during the flight where start and

stop transients can be neglected, equation (1.7) is most appropriate.

Table 1.1 provides information about the specific momentum of actual and outdated launcher

systems including Saturn V, Ariane 4, Ariane 5 and the Space Shuttle. In terms of Is, ob-

viously cryogenic systems provide the higher efficiency in comparison to storable propulsion

systems driven typically by hydrazine2 based propellants. For this reason, cryogenic engines

are preferentially applied in rocket upper stages that are designed to be launched in lower or-

bits. However, a major disadvantage of cryogenic propellants is their notably low saturation

temperature producing high amounts of boil-off. This represents a big challenge in terms of

long time storage. The cryogenic upper stage ESC-A of the European space launcher Ariane 5

is shown in figure 1.2. Beside the tanks to store liquid oxygen (LOX) and helium (He), the

axisymmetric reservoir for liquid hydrogen (LH2) is the largest tank compartment of this stage.

Initially, this tank is pressurized up to a certain system pressure that is in the order of 300 kPa,

while the tank is approximately 95% full of cryogenic propellant.

During the ascent phase when the rocket executes several flight maneuvers such as rolling

and pitching in order to reach Earth’s orbit, liquid propellants tend to more or less periodic

surface movements within the tank. Commonly, this is called liquid sloshing, which is typically

caused by variations of the linear and angular acceleration in x, y and z direction. For most

applications concerning propellant storage in rocket tanks, liquid sloshing is an undesired side

effect causing unwanted mechanical and thermodynamical reactions in the rockets feed system.

In this connection, two aspects are of major importance: damping and sudden pressure drops.

2Hydrazine is a storable nitrogen based propellant that is often utilized with nitric acid as oxidizer.
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Damping

Other than using solid or gaseous propellants, the utilization of liquid propellant imply the

permanent occurrence of liquid motion that can not be completely prevented in rocket tanks.

A notable property of liquid sloshing is the ability to dissipate energy as a result of viscous

stresses within the liquid and between the liquid and the wall boundary. Commonly, this

property is called damping. Among others, the damping characteristic of a liquid significantly

influences the sloshing dynamics and in particular the maximum wave amplitude. In general,

the higher the damping, the less dominant are the sloshing dynamics. Damping is directly

connected to the liquid viscosity ν, to the tank size R, to the acceleration level az and for some

extend to the tank fill level H. Since the damping level for a given tank/propellant combination

is fixed during the ascent phase3, the sloshing dynamics can be reduced by according tank design

features such as the application of horizontal ring baffles. Ring baffles represent a substantial

obstacle for the liquid motion during sloshing. However, the knowledge about the damping

characteristics may help to improve the design of suitable tank solutions particularly for future

upper stages.

Pressure drops

By the utilization of cryogenic propellants, another important aspect is given by the impact

of sloshing on the coupling between the heat and mass transfer at the phase interface between

liquid and vapor. Background of this assumption is the fact that previously a sudden char-

acteristic pressure drop occurred in the hydrogen tank of the Ariane 4 upper stage due to

propellant sloshing during the ascent phase. As a matter of fact, a pressure drop might be crit-

ical compromising the structural stability of the tank. As mentioned before, the tank pressure

is approximately p = 300 kPa. Due to certain flight maneuvers, the tank content is initiated

to slosh. Within seconds, the pressure in the tank drops by 5 to 10%. It is assumed that the

characteristic pressure drop phenomenon is caused by condensation effects that are provoked

by the mixing of liquid at the free surface with liquid from the bulk.

Both aspects, the damping characteristics as well as the thermodynamic phenomena - such as

the characteristic pressure drop - are of major importance since these effects may influence the

tank design of future cryogenic upper stages. Furthermore, this might also be of interest by

considering micro-gravity conditions particularly for engine shut-down and restart maneuvers

in orbit. Here, propellant sloshing preferably may be considered as settling effect where the

vector of the motion is different, but the occurring fluid dynamics as well as thermodynamic

effects may appear in a similar manner.

3The tank is assumed to be filled to more than half of its volume with propellant.
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1.1 State of the Art

The theoretical consideration of sloshing liquids in closed containers can be traced back to

Lamb [40] who presented the mathematical description of oscillating surface waves in cylindrical

tanks based on the potential theory using Bessel functions. Based on his approach, he could

identify different sloshing modes showing a strong dependency on the excitation frequency.

Viscous effects in cylindrical tanks with flat bottoms were considered firstly by Miles [46]

as well as Case & Parkinson [22]. They assumed that viscous energy dissipation can be

referred to a small boundary layer in the vicinity of the tank walls. In general, the dominant

parameters that influence viscous damping effects in liquids can be characterized by theGalilei

number defined as the ratio of gravitational forces to viscous forces so that Ga = az R
3/ν2.

However, an experimental proof was performed by Stephens et al. [55] conducting sloshing

tests in a cylindrical tank using water. Mikishev & Dorozhkin [45] studied firstly spherical

bottom geometries. Particularly for fill levels in the order of the tank size and below, they could

identify a significant influence of the tank geometry on the damping characteristics of the liquid.

Referring to the American aerospace agency, the most complete compendium in this period

concerning liquid sloshing in rocket propellant tanks were composed by Bauer [15] as well as

by Abramson [1] for NASA. Particularly the latter work contains approaches for analogous

models to describe liquid sloshing. This includes spring mass and pendulum models where the

liquid content is substituted by an oscillating mass point. Viscous properties were added by

appropriate dashpot elements, so that the models are reduced to ordinary differential equations

to describe the complex liquid system. Recently, this work was rewritten by Dodge [27] and

later by Ibrahim [37], in which numerical methods for the analogous models were updated

using more efficient simulation codes to compute the occurring sloshing forces and the natural

frequencies particularly under the consideration of complex tank geometries.

With regard to the planned cryogenic upper stage for the European space launcher Ariane 5,

experimental sloshing tests with storable liquids were conducted by Royon-Lebeaud et al. [51,

52]. They studied large amplitude sloshing and swirling waves in square-base and cylindrical

tanks. Arndt & Dreyer [3, 6] performed sloshing experiments to test the influence of the

bottom geometry on the damping characteristics of the liquid. They considered flat, spherical

and convex bottom geometries using water to verify the damping models for storable liquids

developed by Mikishev & Dorozhkin [45] and Stephens et al. [55]. The numerical results

showed quite good agreement except for a flat bottom geometry where the numerical damping

results performed with the commercial CFD software Flow3D
4 over-predict the experimental

results by approximately a factor of 2.

In terms of cryogenic propellants, fundamental research was done on behalf of NASA in the

1960’s and 1970’s. One of the first cryogenic rocket engines that was developed by Rocket-

4
FLOW3D Version 9.1.1. by Flow Science Inc.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.2 Motivation and Objectives 7

dyne is the J-2. Amongst others, this engine was applied on the third stage of the Saturn V

rocket, the motor of the Apollo space program. The AS-203 experiment [57] that was performed

on the V/S-IVB stage of a Saturn-I-B rocket, was conducted to verify the cryogenic propellant

control system in consideration of the application on the Saturn V upper stage. Equipped

with a variety of sensors, the main focus of this mission was to study cryogenic propellant

characteristics during the ascent phase and in a low gravity environment.

To enhance the understanding of the thermodynamics within the framework of cryogenic propul-

sion, much work was done on fields of pressurization [10, 24, 50] and stratification [13, 14, 24, 42].

Recent numerical investigations in this area are conducted by Grayson et al. [31, 32], Himeno

et al. [35, 34] and Lacapere et al. [39]. They studied the phase change at the free liquid surface

in cryogenic liquids under the impact of sloshing.

Moran et al. [48] performed full size ground sloshing experiments in pressurized spherical

tanks using liquid hydrogen LH2. Varying the excitation frequency, amplitude and ullage vol-

ume, the thermodynamic response under the impact of Earth’s gravity could be characterized.

It was found that particularly in the vicinity of the first natural frequency, sloshing effects

have a major influence on the tank pressure development that may lead into ullage collapse.

Furthermore, they could show that the pressure drop can be prevented by using helium as

non-condensable pressurant gas. The pressure drop phenomenon on laboratory size scale was

recently observed by Lacapere et al. [39] studying laterally excited liquid nitrogen LN2 in

a R = 0.095 m cylindrical tank. The pressure drop could be numerically determined with a

customized version of the commercial CFD software Fluent. For the first asymmetric and

symmetric sloshing modes, Das & Hopfinger [26] observed the characteristic pressure drop

by using the engineering fluids FC-72 and HFE7000. This coheres with studies performed by

Hopfinger & Das [36] who used FC-72 and HFE7000 as well. They could express the ob-

served pressure variation in terms of an effective diffusion coefficient, the Jacob number and

the temperature gradient in the boundary layer in the vicinity of the free surface. Experimental

studies under variation of the pressurization are conducted by Arndt et al. [7, 8] showing the

influence of a non-condensable pressurant gas on the pressure drop phenomenon.

1.2 Motivation and Objectives

The motivation of this work is coupled to the development of a new cryogenic upper stage for the

European space launcher Ariane 5. Particularly the layout of the propellant tank compartment

to store liquid hydrogen (LH2) may be influenced by the results that are discussed in this work.

It is of fundamental importance to enhance the understanding of the fluid-dynamics of the

cryogenic propellant and the thermodynamical effects that might occur under the impact of

sloshing within the tank.
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fluids is a widely explored field [6, 45, 52, 55]. In the current work, the damping model based

on the Galilei number Ga will be tested for cryogenics and in particular for liquid nitrogen

LN2 as substitute for liquid hydrogen5 LH2. For a constant tank size, the fill level will be

varied to emphasize the influence of the bottom geometry on the damping characteristics in an

axis-symmetric tank with a spherical bottom shape.

Only few experimental investigations can be found in the literature concerning cryogenic pro-

pellant sloshing in gravity dominated environments that would reflect the conditions during the

ascent phase [26, 39, 48]. Particularly the consideration of variable initial conditions represents

a field of further investigation that may be important for the design of future upper stages.

The objectives of this work include the installation of an appropriate laboratory scale test fa-

cility in order to perform cryogenic sloshing tests with liquid nitrogen. Under the requirements

of different initial conditions, the impact of the sloshing liquid shall be tested to study the

changes of the corresponding thermodynamical conditions in the tank to identify the charac-

teristic pressure drop phenomenon. For this purpose, the tank shall be pressurized by three

different methods including

• self-pressurization where the tank is pressurized by means of the parasitic heat flow that

continuously leaks into the system,

• external nitrogen pressurization where gaseous nitrogen from an external gas reservoir is

fed into the tank, and

• external helium pressurization where gaseous helium from an external gas reservoir is fed

into the tank.

The helium experiments are of particular interest, since helium is a non-condensable gas in a

nitrogen environment. It is expected to reduce the pressure drop under the impact of sloshing.

The obtained data is presented in nondimensional form in order to allow the up-scaling to

other dimensions including previous experimental results as well as to enable predictions for

the full size application. Previous data by Moran et al. [48], Lacapere [39] and Das &

Hopfinger [26] performing experiments with higher initial pressures and other liquids are

considered to confirm the actual results.

This work shall help to enhance the understanding of handling cryogenic liquids particularly

when they are stored in upper stage rocket tanks. Furthermore, this work shows the limits of

simple laboratory size experiments in order to simulate the complex full size geometry of upper

stage tanks. Derived from actual results, it also suggest some motivation for future activities

on this field.
5In the current case, the security guidelines for laboratory purpose of the University of Bremen prohibit

the utilization of liquid hydrogen for quantities of approx. 20 liter without extensive modifications of the
infrastructure.

The understanding of the viscous damping for storable liquids such as water or engineering

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 2

THEORETICAL BACKGROUND

This chapter is dedicated to the theoretical background to describe the occurring effects related

to liquid sloshing. It starts with the introduction of the governing transport equations in

accordance to explain the fluid dynamical problem. From these equations the corresponding

characteristic numbers are derived to apply an adequate scaling. Furthermore, the fluid motion

in the container is described by means of the potential theory. This theory is enhanced by

a vortex potential function in order to consider the viscous property of the fluid as well [46,

45, 55]. The pressure drop phenomenon is theoretically described by an approach of Das &

Hopfinger [26] by considering an effective diffusion coefficient within the liquid.

Figure 2.1 shows a typical cylindrical propellant tank with a spherical bottom shape as often

found in actual and previous applications [1, 17, 27] with a liquid fraction (L) and an ullage (U).

Figure 2.1: Schematic illustration of the tank including the definition of a single fluid element
dV of mass dm. The tank consists of a liquid and an ullage phase. The axes are defined in
cylindrical and cartesian coordinates, while the origin is set to the tank bottom.
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10 THEORETICAL BACKGROUND

The tank is excited in y direction, whereas f is the frequency and yA is the amplitude of the

oscillation. The z axis points contrary to the gravity vector g = (0, 0,−g)T , while the x direction
points perpendicular to the excitation direction. Internally in terms of cylindrical coordinates,

the radial direction is defined as r, the circumferential direction is θ, and again, z points from

bottom to the top along the symmetry axis. The origin of the cylindrical coordinate system

is set to the tank bottom. The stationary free surface is denoted as Γ0, while the moving free

surface is denoted as ΓS. The normal vector perpendicular to the free surface is defined as n.

The cylindrical tank has a radius of R and is filled with liquid propellant up to a certain fill

level H. Due to the excitation, the propellant content is forced into a sloshing motion, whereas

the displacement of the oscillating liquid surface can be approximated by ζ = R tanαs with

respect to the stationary free surface. Here, αs is the deflection angle of the free surface. The

height of the ullage region is defined as h, so that the entire height of the tank is LT = H+h. As

described at the end of this chapter, the liquid motion can appear in different sloshing modes,

which strongly depend on the excitation, the tank size, and the liquid properties.

2.1 Governing Equations

Typical fluid dynamical problems can be described by the three transport equations that are

given by the conservation of mass, the conservation of momentum and the conservation of

energy. In the following, these equations are introduced in general based on [19, 12, 23, 40, 49].

The local velocity of the fluid element dV (see figure 2.1) with the mass dm is defined as

u = (ur, uθ, uz)
T in cylindrical coordinates. In order to satisfy the conventional definition, the

liquid is considered as continuum with a free surface. In the following, the governing equations

are introduced describing a one-phase system with liquid.

2.1.1 Conservation of Mass

The basic principle of the mass conservation includes that the mass dm of the fluid element dV

with the density � is assumed to be constant. Therefore, the time variation of the mass equals

the difference between inlet and outlet fluxes - or in general - the mass flow rate ṁ, so that

dm

dt
= ṁ . (2.1)

The time variation of the mass in the considered fluid element dV is defined as

dm

dt
=

∂

∂t

∫
V

� dV =

∫
V

∂�

∂t
dV . (2.2)
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The net mass flux along the contour dA of the fluid element dV is defined as

ṁ = −
∮
A

� ui dAi (2.3)

where ui gives the i
th velocity component of the velocity vector u at the fluid element contour Ai.

Here, i = 1 corresponds to the radial direction r, i = 2 corresponds to the circumferential

direction θ, and i = 3 corresponds to the axial direction z. However, setting equation (2.2) and

(2.3) into equation (2.1) gives the integral form of the mass balance∫
V

∂�

∂t
dV +

∮
A

� ui dAi = 0 . (2.4)

Applying Gauss theorem for volume calculation, the contour integral in equation (2.4) can be

transformed into the volume integral∫
V

∂�

∂t
dV +

∫
V

∂� ui
∂xi

dV = 0 . (2.5)

For infinitesimal volumes V → 0, the differential form of the mass balance yields

∂�

∂t
+∇ · (�u) = 0 . (2.6)

2.1.2 Conservation of Momentum

The conservation of momentum is derived from Newton’s second law explaining that the time

rate of the change of the linear momentum is proportional to the net forces Fj acting on the

fluid element dV with the mass dm yielding

d (muj)

dt
=

∑
Fj (2.7)

where the linear momentum P is defined as the product of the fluid mass m and the local fluid

velocity u, so that P ≡ mu. Thus, the left hand side of equation (2.7) reads

d (muj)

dt
=

∫
V

∂ (� uj)

∂t
dV +

∮
A

� ui uj dAi (2.8)

consisting of a time dependent unsteady term and a term including the convective momentum

transport. On the right hand side of equation (2.7), the net forces give

∑
Fj = −

∮
A

p dAj︸ ︷︷ ︸
(I)

+

∮
A

τij dAi︸ ︷︷ ︸
(II)

+

∫
V

� fj dV︸ ︷︷ ︸
(III)

, (2.9)
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12 THEORETICAL BACKGROUND

where (I) gives the static pressure gradient, (II) gives the viscous momentum transport, and (III)

gives the specific body forces fj acting on the fluid element. In consequence, the momentum

balance in its integral form reads∫
V

∂ (� uj)

∂t
dV +

∮
A

� ui uj dAi = −
∮
A

p dAj +

∮
A

τij dAi +

∫
V

� fj dV . (2.10)

Applying the Gauss theorem for volume calculation, the contour integrals can be converted

into volume integrals. Then, equation (2.10) yields

∫
V

∂ (ρ uj)

∂t
dV +

∫
V

∂ (ρ ui uj)

∂xi
dV = −

∫
V

∂p

∂xj
dV +

∫
V

∂τij
∂xi

dV +

∫
V

� fj dV . (2.11)

For an incompressible Newtonian fluid, the viscous stress tensor τij reduces to

τij = μ

[
∂uj
∂xi

+
∂ui
∂xj

]
(2.12)

with μ representing the dynamic viscosity. Then, the differential form of the momentum balance

given in equation (2.11) can be rewritten in vector notation

�

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ μ∇2u+ �g (2.13)

where the specific body forces fj are replaced by the gravitational acceleration g = (0, 0,−g)T
representing the buoyancy term.

2.1.3 Conservation of Energy

According to the first law of thermodynamics for closed systems, the fluid element dV can be

balanced with the total internal energy dUe, tot stored in the fluid, which is equal to the amount

of energy added by heating dQ as well as by mechanical work dW . Hereby, the system can be

considered as an isochoric process since the volume of the tank is constant. Thus, the energy

balance yields

dQ

dt
+
dW

dt
=
dUe, tot

dt
+ ṁout

[
he out +

u2out
2

+ g z

]
− ṁin

[
he in +

u2in
2

+ g z

]
. (2.14)

For a closed system, the mass flow rates entering the tank ṁin and leaving the tank ṁout are

zero. The energy term on the left hand side includes the internal energy (I) and the energy

flux at the volume contour (II), so that

dUe, tot

dt
=

∫
V

∂ (� ue)

∂t
dV︸ ︷︷ ︸

(I)

+

∮
A

� ue ui dAi︸ ︷︷ ︸
(II)

(2.15)
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where ue = Ue/m is defined as specific internal energy with respect to the mass. While the

internal energy is stored within the fluid, the energy flux at the volume contour corresponds to

the mass that may be added or removed from the system. Furthermore, it is more convenient

to express the energy stored in the fluid by introducing the enthalpy He [11]. The enthalpy is

defined as

He = Ue + pV (2.16)

or in terms of the change of enthalpy

dHe = dUe + pdV + V dp . (2.17)

However, the heat that is added can enter the system only through the volume contour yielding

dQ

dt
=

∮
A

q̇i dAi (2.18)

with q̇ = Q̇/A as specific heat flux. Mechanical work is only added indirectly to the system

(excitation) and can therefore be neglected. According to Euler’s approach, the external

excitation does not need to be considered here. Thus,

dW

dt
= 0 . (2.19)

Setting equation (2.15), (2.18), and (2.19) into equation (2.14) leads to the integral form of the

energy balance given by ∫
V

∂ (� ue)

∂t
dV +

∮
A

� ue ui dAi =

∮
A

q̇i dAi . (2.20)

Again, applying the Gauss theorem for volume calculation, the contour integrals can be con-

verted into volume integrals yielding∫
V

∂ (� ue)

∂t
dV +

∫
V

∂ (� ue ui)

∂xi
dV =

∫
V

∂q̇i
∂xi

dV . (2.21)

The right hand side term can be rewritten by means of Fourier’s law of heat conduction

q̇i = −k ∂ϑ/∂xi. Regarding that the internal specific energy can be also expressed by the heat

capacity for constant volume cv, so that ue = cv ϑ, the energy balance for a constant volume

reads
∂ (� cv ϑ)

∂t
+
∂ (� cv ϑui)

∂xi
= k

∂2ϑ

∂x2i
(2.22)

where k is the thermal conductivity of the fluid. In vector notation, equation (2.22) can be

rewritten

� cv

[
∂ϑ

∂t
+ u · ∇ϑ

]
= k∇2ϑ . (2.23)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.


