
1
INTRODUCTION

Turbocharged direct injection spark ignition (DISI) engines represent a major step in the
evolution of gasoline engines. DISI engines have become increasingly popular due to the po-
tential to significantly improve fuel efficiency and emission levels while the performance of the
engine is maintained or even enhanced. In turbocharged DISI engines, both the compression
ratio and spark timing are limited by the occurrence of knock. Hence, it limits the thermody-
namic efficiency and the performance of the engine. Engine knock is an irregular combustion
phenomenon, which is promoted by autoignition processes in the unburnt gas ahead of the
flame front. This phenomenon is a fundamental issue of modern spark ignition (SI) engines.
Another important aspect is the formation of pollutants, such as nitrogen oxides (NOx) and
soot. With the introduction of the stringent emission standard EURO 6 in 2014, these pollu-
tants have to be considerably reduced compared to EURO 5. The new standard also limits
the number of soot particles for the first time. Hence, the emissions of pollutants and the
onset of knock are crucial criteria for the development of internal combustion (IC) engines.
A more complete understanding of these physical processes can be obtained by combining
experimental and numerical development tools. Especially the numerical simulation of the
in-cylinder flow gives a deeper insight and enables a better understanding of the inherent
physical phenomena. This makes it possible to improve and optimize the combustion process
in IC engines.

Computational fluid dynamics (CFD) in combination with Reynolds-averaged Navier-Stokes
(RANS) turbulence closures has been established as an efficient tool for the description and
analysis of the flow inside IC engines. However, the three-dimensional simulation of turbulent
reacting flows in internal combustion engines still represents one of the most challenging ap-
plications of computational fluid dynamics. A common approach to model turbulent reacting
flows is to incorporate detailed chemical kinetics in order to determine the chemical source
terms in the species transport equations. The use of finite-rate chemistry in computational
fluid dynamics gives rise to a large system of nonlinear ordinary differential equations (ODE)
for each computational cell, which leads to a dramatically increase in computational time.
Despite the use of large chemical reaction mechanisms being limited by the computational
power, the major challenge is still the description of turbulence chemistry interaction. In ap-
plications like IC engines, the fluctuations of temperature and species concentrations directly
affect the chemical production rates. The difficulty lies in the accurate prediction of the mean
chemical source term. This is especially true if the time scales of turbulence and chemical
reactions are of the same order of magnitude. Hence, for the prediction of combustion, engine
knock, and pollutant formation soundly based physical models are needed in the framework
of a comprehensive engine simulation methodology.

In the gasoline engine development process at BMW, the commercial 3D-CFD solver AN-
SYS CFX is employed for the simulation of the in-cylinder flow in turbocharged DISI en-
gines. The objective of this thesis was to enable the CFD code to correctly describe the
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turbulent flame front propagation, heat release, nitric oxide formation, and engine knock in
turbocharged DISI engines. Special emphasis was put on the development of a simulation
methodology that is able to predict these physical processes with high accuracy and without
tuning parameters. In order to meet these demands, it was necessary to derive new physical
models and to implement these into ANSYS CFX.

For the modeling of the turbulent combustion process the G-equation model was imple-
mented in cooperation with ANSYS into the 3D-CFD solver ANSYS CFX. The G-equation is
a level-set based flamelet model, originally proposed by Williams [123] and widely elaborated
by Peters [80], Peters [82], and Peters [83]. It has proven in recent years to be successful in
predicting the combustion process in spark ignition engines. The G-equation model provides
a kinematic and geometrical description of the flame front, and there is no need for a source
term closure. The major advantage of this combustion model is that the model constants
are well-defined. Hence, it is not necessary to adjust the constants to fit experimental data,
which considerably improves the predictability of the combustion simulation.

In order to incorporate detailed chemical kinetics into the in-cylinder flow simulation of
IC engines, a multizone approach was employed. In the multizone approach the combustion
chamber is split into several zones that are treated as homogeneous reactors. In each of these
zones detailed chemistry is applied and solved in an external multizone chemistry solver.
The multizone approach has demonstrated to accurately predict pressure traces and heat
release rates in homogeneous charge compression ignition (HCCI) engines with a very low
computational overhead. Despite the various existing multizone models having shown to
produce reasonable results, they are lacking a sound mathematical and physical basis. The
definition of a reactor and its interaction with other reactors within the multizone approach is
rather vague. Since a sound mathematical and physical basis is missing, the interpretation of
the results can become difficult because the underlying limitations of the employed approach
are not clear. Hence, in the framework of this thesis a thorough derivation of the multizone
approach is given. The derivation of the multizone approach is based on the conditional
moment closure (CMC) equations proposed by Klimenko and Bilger [52]. This leads to the
novel concept of the conditional multizone (CMZ) model. Based on this detailed derivation it
is possible to deduce precise consequences regarding the modeling of reactors in phase space,
e.g. how to determine the rate at which each reactor exchanges mass, heat, and species.
Moreover, the novel multizone approach can also be conditioned on burnt and unburnt gases.
By combining the multizone model with a turbulent combustion model for premixed flames,
it can be used to predict both volumetric and front-like combustion modes and nitric oxide
formation in SI engines.

Based on the conditional multizone approach, a model was derived to simulate the nitric
oxide formation in turbocharged DISI engines. It is used in combination with the level-set
based flamelet model. The combustion model is employed to simulate the overall heat release,
whereas the multizone model is used to determine the chemical reactions in the post-flame
region. The entire post-flame region is discretized by a small number of zero-dimensional
well-stirred reactors. Within the reactors detailed chemical kinetics are used to model the
slow process of nitric oxide formation. In order to solve the large system of nonlinear ordinary
differential equations that result from the employed multizone model, a chemistry solver was
developed. The multizone chemistry solver is interactively coupled with ANSYS CFX via
Fortran user routines.

Engine knock is a very complex phenomenon involving chemical processes in the unburnt
mixture, turbulent flame propagation, and detonation waves. Especially the erratic behavior
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and the impact of cycle-by-cycle variations makes the modeling of engine knock a challenging
task. Most of the current modeling approaches do not provide statistical information regard-
ing the formation of engine knock. They are solely based on mean quantities. Hence, they
do not take into account the inherent feature of engine knock, namely that it is a stochastic
phenomenon. In order to address the stochastic nature of engine knock, a generalized knock
integral method was derived. This model solves a transport equation for the mean and the
variance of a well-defined ignition progress variable. The chemical source term and the reac-
tion term that appear in these balance equations are closed by employing a presumed PDF
approach. Hence, the impact of mixture fraction and temperature fluctuations on the igni-
tion progress variable is accounted for. The benefit of this generalized knock integral method
is that it provides distinct criteria to determine the mean knock onset and to identify the
locations of autoignition. Moreover, it also provides the probability of autoignition at every
location in the combustion chamber.

The structure and outline of this work is as follows:

• Chapter 2 presents an introduction to turbulent flows. At first, the governing equations
for chemically reacting flows are presented. This is followed by a phenomenological
description of turbulence and a discussion of the basic concepts of probability theory.
The Reynolds-averaged Navier-Stokes equations are introduced and complemented by
an overview of different turbulent-viscosity models to determine the unclosed Reynolds
stresses.

• An overview of the fundamentals of laminar and turbulent premixed combustion is given
in Chapter 3. In the first part, the physics and structure of premixed laminar flames are
discussed and the effects of strain and curvature on the flame structure are highlighted.
This is followed by a description of the turbulence flame interaction. Finally, different
modeling approaches for turbulent premixed combustion are presented.

• In Chapter 4, the implementation of the level-set based flamelet model for turbulent
premixed combustion into ANSYS CFX is discussed in detail. The level-set approach for
determining the flame front location is introduced, followed by the turbulence modeling
of the G-equation. Subsequently, the integration of the combustion model into ANSYS
CFX is outlined and the numerical treatment of the level-set approach is discussed.
Finally, a thorough validation of the implemented level-set based flamelet model is
presented.

• A detailed derivation of the novel conditional multizone approach is given in Chapter 5.
At first, the conditional moment closure equations are extended to account for multi-
ple conditions that are not restricted to conserved scalars. Based on these transport
equations, a single conditional multizone model is derived, which can be applied e.g. to
simulate the heat release in HCCI engines. In order to apply the multizone approach for
SI engines, the model is extended to be used in combination with turbulent combustion
models.

• Chapter 6 is devoted to new modeling approaches of engine knock and nitric oxide
formation. The first part focuses on engine knock. A brief introduction on the nature of
engine knock and an overview of current modeling approaches are given. This is followed
by a description of the different stages of autoignition for a hydrocarbon fuel-air mixture.
A novel knock model is proposed that can be interpreted as a generalized knock integral
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model. The second part is devoted to the modeling of nitric oxide formation. Based on
the conditional multizone approach, a model is presented to simulate the nitric oxide
formation in turbocharged DISI engines.

• The experimental and numerical settings are presented in Chapter 7. In the first part,
the engine specifications and the measurement settings are introduced. This is followed
by a description of the employed simulation approach, i.e. 1D gas dynamics coupled
with a heat release analysis and 3D-CFD calculation.

• In Chapter 8, simulation results for a turbocharged DISI engine are presented and
compared with experimental data. The gas exchange process, mixture formation, and
combustion process are investigated for four different engine operating points. Special
emphasis is put on the characterization of the interaction between turbulence and flame.
The assessment of the nitric oxide model is based on a spark timing and equivalence
ratio sweep. These sweeps were performed in order to evaluate the model’s capacity
to predict the impact of a variation in temperature and mixture composition on the
formation of nitric oxide. Finally, simulation results of the knock model are presented.
In order to validate the generalized knock model, a spark timing sweep was performed
on the engine test bench for a full-load operating point. The simulation results are
discussed in detail and are compared with experimental data.

• In the last chapter, a summary of the thesis work is given and areas for future work are
highlighted.
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2
DESCRIPTION OF TURBULENT FLOWS

The vast majority of the flows encountered in engineering practice are turbulent. All these
turbulent flows share a common property: the ability to mix transported quantities much
more quickly than the molecular diffusion processes. This is a very important characteristic
feature of turbulent flows, since it has a direct impact on all practical applications. For
instance, it increases the turbulent heat diffusion and the wall heat transfer, which is a crucial
aspect for the design of heat exchange devices. Intake ports in turbocharged DISI engines are
designed to produce high level of turbulence in order to enhance mixing between air and fuel
in the combustion chamber. A high turbulence level also accelerates the combustion process.
Without turbulence it would not be possible to operate an engine at high speeds, since
the mixing and the combustion process would proceed too slowly. In addition, turbulence is
highly dissipative and due to its erratic and chaotic behavior it can introduce flow instabilities
that lead to a decrease in prediction accuracy. The underlying processes are very complex
and different approaches as well as completely different points of view exist how to define
turbulence. This chapter gives only a brief introduction to the physics of turbulence and to
its modeling in the context of Reynolds-averaged Navier-Stokes (RANS) equations. For a
comprehensive overview the reader is referred to Pope [93] and Lesieur [58].

In Section 2.1, the instantaneous conservation equations for reacting flows are presented.
At first, the basic equations for describing the thermodynamical and chemical state of a
reacting mixture are introduced. This is followed by a description of the governing equations
of mass, species, momentum, and energy. Section 2.2 provides a short introduction to the
nature of turbulence and a discussion of the characteristic scales of turbulent motion. It
also introduces the basic concepts of probability theory, which is extensively used in this
work. The Reynolds-averaged Navier-Stokes equations are presented in Section 2.3. Different
turbulence models based on the turbulent-viscosity approach are discussed in order to provide
closures for the unknown quantities in the averaged transport equations. Finally, a critical
discussion of the RANS approach is given in Section 2.4.

2.1 governing equations for reacting flows

2.1.1 Thermochemistry and Chemical Kinetics

A reacting mixture is composed of multiple species that can react chemically, which leads to a
significant change in temperature and composition. Hence, the tracking of the thermodynamic
state of a reacting mixture needs special attention. In the following, the basic equations for
determining the state of a reacting mixture are presented.
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Composition

There exist various ways or quantities to define the composition of a mixture. An overview
of common quantities and useful relations is given in Table 2.1. In order to characterize the
reacting mixture, the equivalence ratio φ is introduced. It is defined as the ratio of fuel mass
fraction YF and oxidizer mass fraction YO normalized by the stoichiometric ratio (YF/YO)st
(Poinsot and Veynante [90])

φ =

(
YF
YO

)/(YF
YO

)
st

. (2.1)

The equivalence ratio is a central parameter for premixed combustion: rich combustion is
obtained for φ > 1 (the fuel is in excess), whereas lean combustion is characterized by φ < 1
(the oxidizer is in excess). For non-premixed combustion, the mixture fraction Z is commonly

Quantity Definition
mass fraction Yk Yk =

mk
m = Wk

W Xk

mole fraction Xk Xk =
nk
n = W

Wk
Yk

partial density ρk ρk =
mk
V

molar concentration [Xk] [Xk] =
nk
V

mean molecular weight W W =

⎛
⎝∑N

k=1
Yk
Wk

⎞
⎠−1

Table 2.1: Definition of mass fraction, mole fraction, mass and molar concentrations as well
as the mean molecular weight. mk, nk, V , Wk, and N denote mass, number of
moles, volume, molecular weight, and number of species. The subscript k denotes
the species index.

used to characterize the composition of the reacting mixture (Peters [83]). Based on a two
feed system with the fuel stream ṁF and the oxidizer stream ṁO, the mixture fraction can
be defined as the local ratio of the mass flux originating from the fuel stream to the total
mass flux

Z =
ṁF

ṁF + ṁO
. (2.2)

The mixture fraction is related to the equivalence ratio according to

Z =
φZst

1 − Zst(1 − φ)
and φ =

Z

1 − Z

1 − Zst
Zst

, (2.3)

where the stoichiometric mixture fraction is denoted by Zst.

Thermal Equation of State

The thermal equation of state provides the relationship between the pressure p, temperature
T , and density ρ. For most technical applications, the law of ideal gases is reasonably ac-
curate, which means that the intermolecular forces and the volume of the molecules can be
neglected (Turns [118]). For a mixture of N perfect gases the pressure p, density ρ, and molar
concentration [X ] are determined by

p =
N∑
k=1

pk , ρ =
N∑
k=1

ρk , and [X ] =
N∑
k=1

[Xk] . (2.4)
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pk, ρk, and [Xk] are the corresponding partial quantities. The partial pressure is related to
the concentration and temperature by

pk = [Xk]�T =
ρk
Wk

�T , (2.5)

where � represents the universal gas constant and Wk is the molecular weight of species k.
This leads to the well known equation of state for a mixture of N perfect gases

p

ρ
=

N∑
k=1

Yk
Wk

�T =
�
W

T = R T . (2.6)

The specific gas constant of the mixture is denoted by R = � / W .
As already stated above, the ideal gas assumption is only valid if the intermolecular forces

can be neglected. Hence, at high pressures and high densities real gas effects need to be
considered. Although the pressure in turbocharged SI engines can rise beyond 100 bar at full
load, it is still reasonable to use the thermal equation for ideal gases. This is due to the fact
that the pressure rise is caused mainly by the heat release during the combustion process.
In this particular case, the density remains moderate due to the corresponding increase in
temperature. However, for spray and wall film evaporation it can be necessary to account for
real gas effects depending on the thermodynamic state of the multiphase flow, e.g. near the
vapor-liquid critical point of the fluid.

Caloric Equations of State

In addition to the thermal equation of state p = p(T , v), where v = 1/ρ denotes the specific
volume, it is also possible to define caloric equations of state given by

uk = uk(T , v) and hk = hk(T , p) . (2.7)

These equations represent the general functional relationship of the internal energy uk and
the enthalpy hk of species k with respect to the state variables T and v as well as T and p,
respectively. It should be noted that other sets of variables, such as (p, v), could also be used
to determine the caloric state of the mixture. The enthalpy is related to the internal energy
via

hk = uk + p v . (2.8)

The differential change of the internal energy and enthalpy can be obtained by differentiating
Equation 2.7

duk =

(
∂uk
∂T

)
v

dT +

(
∂uk
∂v

)
T

dv , (2.9)

dhk =

(
∂hk
∂T

)
p

dT +

(
∂hk
∂p

)
T

dp . (2.10)

It is known from kinetic gas theory that for an ideal gas the internal energy and the enthalpy
are only functions of temperature. Hence, the partial derivatives with respect to the specific
volume and pressure in Equation 2.9 and Equation 2.10 equal zero. By introducing the
specific heat capacities at constant volume cvk and constant pressure cpk, it follows

duk =

(
∂uk
∂T

)
v

dT = cvk dT , (2.11)
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dhk =

(
∂hk
∂T

)
p

dT = cpk dT . (2.12)

The heat capacity simply defines the amount of heat which is needed to increase the temper-
ature by one degree. The specific enthalpy hk of species k is given by

hk = h0
fk +

∫ T

T0
cpk dT , (2.13)

where h0
fk represents the standard enthalpy of formation at an arbitrarily chosen reference

state (usually at the temperature T0 = 298.15 K). The enthalpy h of the mixture is defined
as the sum of the species enthalpies multiplied by their mass fractions

h =
N∑
k=1

hk Yk . (2.14)

The mass specific heat capacity at constant pressure of the mixture is given by

cp =
N∑
k=1

Ykcpk . (2.15)

By combining Equations 2.13 and 2.14, the enthalpy of a reacting mixture can be written as

h =
∫ T

T0
cp dT︸ ︷︷ ︸

sensible

+
N∑
k=1

h0
fkYk︸ ︷︷ ︸

chemical

. (2.16)

It shows that the mixture enthalpy h is a function of both temperature and composition. The
first term on the right-hand side of Equation 2.16 is referred to as sensible enthalpy, whereas
the second term is denoted as chemical enthalpy.

Chemical Kinetics

For a reacting mixture it is necessary to describe the change of its composition due to chemical
reactions. The chemistry is usually described by a collection of elementary reactions (single
step), which account for intermediate species and multiple transition states. A complete el-
ementary reaction mechanism that accurately describes the chemistry of a certain fuel can
consist of up to hundreds of species and even thousands of reactions for long-chain hydrocar-
bons (Curran et al. [20]). Hence, a compact mathematical notation is necessary to define a
reaction mechanism. An outline of the commonly used notation is presented in the following.

Consider a reaction mechanism comprised of N species and M reactions

N∑
k=1

νfkjMk ⇀↽
N∑
k=1

νrkjMk j = 1, . . . , M , (2.17)

where Mk is the symbol for species k. The forward and reverse molar stoichiometric coef-
ficients are denoted by νfkj and νrkj , respectively. The chemical source term ω̇k of species k

reads

ω̇k = Wk

M∑
j=1

νkjwj with νkj = νrkj − νfkj . (2.18)
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wj is the reaction rate of reaction j and can be expressed as

wj = kfj

N∏
k=1

[Xk]
νf

kj − krj

N∏
k=1

[Xk]
νr

kj . (2.19)

The molar concentration of species k is denoted by [Xk], and kfj and krj are the forward
and reverse reaction rate coefficients of reaction j. These reaction rates are usually modeled
using the empirical Arrhenius law (Poinsot and Veynante [90])

kj = Aj T βj exp
(

− Ej

�T

)
. (2.20)

For each reaction j, values for the activation energy Ej , the temperature exponent βj , and
frequency factor Aj need to be provided.

2.1.2 Conservation of Mass and Species

The conservation equation of mass, also known as the continuity equation, is given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 , (2.21)

where ρ denotes the density, ui the ith component of the velocity vector, t the time, and xi
the ith component of the Cartesian coordinate. The mass conservation equation is identical
to the formulation for non-reacting flows. Although the total mass is conserved, the mass of
each species varies due to chemical reactions. In order to account for the effects of chemical
conversion, the mass conservation equation for each species k needs to be solved

∂ (ρYk)

∂t
+

∂

∂xi
(ρ ui Yk) +

∂jki
∂xi

= ω̇k with k = 1, . . . , N , (2.22)

where Yk is the mass fraction of species k, N the number of species, jki denotes the ith
component of the diffusive flux of species k, and ω̇k is the reaction rate. In order to determine
the source term ω̇k, all chemical reactions in which species k takes part need to be evaluated.
In contrast to the convective flux where the transport of a quantity is coupled to velocity,
diffusive mass flux is provoked by gradients in the distribution of certain quantities such as
temperature and species concentrations. The diffusive flux jki can be decomposed as follows

jki = jcki + jTki + jpki , (2.23)

where jcki takes into account the mass flux associated with concentration gradients, whereas jTki
and jpki denote the mass diffusion due to temperature and pressure gradients, respectively. jpki
can be neglected in internal combustion engines, since it becomes only important in cases of
large pressure gradients. The second term on the right-hand side of Eq. 2.23 is associated with
the Soret-effect (Warnatz et al. [122]). It accounts for the diffusive flux due to temperature
gradients

jTki = −DT
k

T

∂T

∂xi
. (2.24)

The coefficient DT
k denotes the diffusion coefficient of species k due to thermal diffusion. The

Soret-effect leads to a mass flux of light molecules towards increasing temperature, whereas
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heavier molecules flow in the opposite direction. As a consequence, a concentration gradient
within the mixture is established. The Soret-effect becomes important for light species and at
low temperatures and, of course, at large temperature gradients (Warnatz et al. [122]). Hence,
it should be considered in laminar diffusion flames, where cold unburnt gases are adjacent to
hot burnt gases. In case of turbulent premixed flames, the temperature gradients are moderate
because of the large flame thickness compared to a laminar flame; and it should be noted
that the combustion in IC engines takes place at high temperatures. It is therefore reasonable
and common to neglect the Soret-effect for the simulation of IC engines. The diffusive flux
jcki due to concentration gradients usually dominates the species diffusion process. In a
multicomponent mixture consisting of N components, jcki is defined by

jcki =
ρWk

W 2

N∑
l=1
l �=k

DklWl
∂Xl

∂xi
, (2.25)

where Dkl denotes the polynary diffusion coefficient of species k with respect to species l

(Gerlinger [36]). W is the molecular weight of the mixture, and Wk and Wl denote the molec-
ular weight of species k and l, respectively. The diffusion due to pressure and temperature
gradients leads to segregation, whereas the diffusion associated with concentration gradients
provokes a mass flux from regions of high to low concentrations. This leads to a homogeniza-
tion of the species concentrations within a multicomponent mixture. Since most combustion
processes occur in air and N2 is abundant, all other species can be treated as trace species and
Dkl can be approximated with Dk = DkN2 . Based on Fick’s law, the following approximation
is commonly used (Peters [83])

jki = −ρDk
∂Yk
∂xi

. (2.26)

Hence, by introducing the Schmidt number

Sck =
ν

Dk
, (2.27)

which compares the momentum and molecular diffusion of species k, the diffusive flux can be
rewritten as

jki = − μ

Sck

∂Yk
∂xi

. (2.28)

Here, ν denotes the kinematic viscosity, which is related to the dynamic viscosity μ via
ν = μ/ρ. It should be noted that this approximation violates mass conservation in a multi-
component system, since the sum of all N fluxes does not vanish. Therefore, it must not be
used in laminar flame calculations (Peters [83]). For a detailed description of species diffusion
processes the reader is referred to Bird et al. [9] and Hirschfelder et al. [45].

2.1.3 Conservation of Momentum

The conservation of momentum is described by

∂ (ρuj)

∂t
+

∂

∂xi
(ρ ui uj) = − ∂p

∂xj
+

∂τij
∂xi

, (2.29)
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where p denotes the static pressure and τij the viscous stress tensor for a Newtonian fluid.
Using Stokes’ hypothesis, the stress tensor can be defined according to

τij = μ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
μ

∂uk
∂xk

δij . (2.30)

δij denotes the Kronecker symbol and μ represents the temperature-dependent dynamic vis-
cosity. It is interesting to note that the momentum equation does not include explicit reaction
terms and remains unchanged compared to non-reacting flows.

2.1.4 Conservation of Energy

The energy equation requires the greatest attention because multiple forms exist. The con-
servation equation for the enthalpy h is given by

∂ (ρh)

∂t
+

∂

∂xi
(ρ ui h) =

∂p

∂t
+ ui

∂p

∂xi
− ∂jqi

∂xi
+ τij

∂ui
∂xj

+ Q̇ . (2.31)

Since h considers the enthalpy of formation (Eq. 2.13, Eq. 2.14), Equation 2.31 does not
include a chemical source term. The transient pressure term can be neglected in open flames
but is important in IC engines, where pressure changes significantly in time. The convective
change of pressure does not need to be considered if one is interested in the small Mach
number limit only. According to Hirschfelder et al. [45], the heat flux jqi can be decomposed
as follows

jqi = jqci + jqdi + jqDi . (2.32)

jqci accounts for heat diffusion and can be expressed by Fourier’s law according to

jqci = −λ
∂T

∂xi
, (2.33)

where λ denotes the thermal conductivity. jqdi is the heat flux due to mass diffusion of species
with different levels of enthalpy, and it is relevant for multicomponent gases only. It is defined
by

jqdi =
N∑
k=1

hk jki . (2.34)

jqDi is associated with the Dufour-effect. It accounts for the heat flux due to species mass
fraction gradients. It can be interpreted as the reciprocal phenomenon to the Soret-effect.
The Dufour-effect is usually neglected in combustion processes (Hirschfelder et al. [45]). Dif-
ferentiating Equation 2.14 one obtains

dh = cpdT +
N∑
k=1

hkdYk . (2.35)

By combining Equations 2.35, 2.34, 2.33, and 2.28, the heat flux takes the form

jqi = − λ

cp

∂h

∂xi
+

N∑
k=1

hk

(
λ

cp
− μ

Sck

)
∂Yk
∂xi

. (2.36)
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Now, by introducing the Prandtl number

Pr =
μcp
λ

, (2.37)

which compares molecular momentum and heat transport, it follows that

jqi = − μ

Pr

∂h

∂xi
+

N∑
k=1

hk

(
μ

Pr
− μ

Sck

)
∂Yk
∂xi

. (2.38)

In order to simplify Equation 2.38, it is assumed that the Lewis number Lek = Sck/Pr

equals unity. This constitutes a situation where mass and heat diffuse in the same way and
no differential diffusion occurs. Hence, Equation 2.38 can be written as

jqi = − μ

Pr

∂h

∂xi
. (2.39)

The last term Q̇ in Equation 2.31 represents a heat source term due to e.g. a spark plug or
wall heat transfer.

2.2 phenomenological description of turbulence

2.2.1 Scales of Turbulent Motion

The term scales is used in a great variety of contexts and meanings in the description of
turbulent flows. For example, it is frequently used in physical space and in Fourier space
without much distinction. This ambiguity of language is one (among others) of the main
difficulties of the inherent problems in turbulence theories. Another difficulty is that different
scales are not as separated as usually assumed. Hence, the distinction between large and
small scales is quite problematic, though useful from the technical point (Tsinober [117]).
There are several useful scales that are statistically defined quantities and not some specific
physical scales. The most prominent scales are those defined by Kolomogorov. According to
the first similarity hypothesis of Kolmogorov, the energy in the viscous subrange is uniquely
determined by the fluid kinematic viscosity ν and the turbulent dissipation rate ε in case
of high Reynolds numbers. Due to viscosity effects, the energy dissipates at the smallest
turbulent scales according to the turbulent dissipation rate. Hence, the length scale of these
eddies must be a function of these two quantities only. Based on dimensional analysis, the
Kolmogorov length scale η can be defined as

η =

(
ν3

ε

) 1
4

. (2.40)

This length scale is considered as the smallest spatial scale in turbulence. Similarly, the
corresponding time and velocity scales are defined as

tη =

√
ν

ε
and uη = (νε)

1
4 . (2.41)

It is known that adequate resolution in space and time in laboratory and numerical exper-
iments is achieved if the smallest resolved scales are of the order of the Kolmogorov scales.
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By assuming scale-invariance of ε, the energy dissipation rate can also be used to derive the
turbulent length scale

lt =
k

3
2

ε
, (2.42)

which is associated with the size of the larger integral eddies. The turbulent kinetic energy k

is defined as half of the trace of the Reynolds-stress tensor

k =
1
2

u′
ku

′
k . (2.43)

The time scale that is associated with the most energetic eddies is referred to as the integral
time scale τ with

τ =
k

ε
. (2.44)

The root-mean-square (RMS) of the velocity fluctuations, u′
RMS , is related to the turbulent

kinetic energy by

u′
RMS = u′ =

√
2
3

k . (2.45)

In the literature, u′
RMS is often referred to as turbulence intensity denoted by u′ or v′, respec-

tively. It has to be noted that Equation 2.45 is strictly valid only for isotropic turbulence.
The relation between the characteristic scales can be obtained by introducing the turbulent
Reynolds number

Ret =
u′lt
ν

. (2.46)

This leads to the following correlations between the Kolmogorov and integral scales
η

lt
= (Ret)

−3/4 ,
tη
τ

= (Ret)
−1/2 ,

uη
u′ = (Ret)

−1/4 . (2.47)

The integral scales are in some sense the largest relevant scales of the system. Turbulent
fluctuations in regions separated by scales much larger than the integral ones both in space
and time do not influence each other. The two-point velocity correlation Rij relates the
velocity fluctuations of two points with distance r = |r| and indicates to what degree they
influence each other

Rij(r, x, t) = u′
i(x, t)u′

j(x + r, t) . (2.48)

For |r| = 0 the Reynolds-stress tensor is recovered. Based on the two-point correlation,
various length scales such as the integral length scale Lkij can be defined according to

Lkij =
1

Rij(0, x, t)

∫ ∞

0
Rij(rk, x, t) drk . (2.49)

If the velocity vectors at the two locations and the distance vector point in the same direction,
the length scale is referred to as the longitudinal integral length scale

L1
11 =

1
u′2
1

∫ ∞

0
R11(r1, x, t) dr1 . (2.50)

Similar to lt, L1
11 is associated to the large energy-containing eddies. Pope [93] has shown

that in the limit of high Reynolds numbers the ratio L1
11/lt tends asymptotically to a value

of 0.43. The Taylor micro length scale, lλ, is defined from the relation

lλ =

(
u′2
1

∂2R11/∂r21

)1/2

. (2.51)
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In the limit of high Reynolds numbers it can be shown that lλ is intermediate in size between
the integral length scale lt and the Kolomogorov scale η. The Taylor scale does not have a
clear physical interpretation (Pope [93]). However, it is used in some turbulence theories to
define the Taylor-scale Reynolds number

Rλ =
u′lλ
ν

. (2.52)

For a more detailed description of the various important length scales the reader is referred
to Rotta [100] and Pope [93].

2.2.2 The Statistical Description of Turbulence

In turbulent flows, the instantaneous realization of the velocity components and scalars such
as mass fractions and temperature are stochastic, fluctuating quantities. It is, therefore,
convenient to describe and to characterize the stochastic nature of these variables by using
the probability theory. In the following, various probability functions are defined and outlined
in order to provide a theoretical foundation of the statistical approach. A more comprehensive
review of statistical methods for turbulent flows is given by Pope [91], Pope [93], and Klimenko
and Bilger [52].

The instantaneous realization of a velocity component u(x, t) at a specific point in space
and time in a turbulent flow can be considered as a random variable. The aim of the statistical
approach is to determine the probabilities of u instead of trying to predict the instantaneous
value, since this value is indeterminable. The probability p of finding a value of u < U is
defined by the cumulative distribution function (CDF) Fu(U) given by

Fu(U) = p{u < U} , (2.53)

where the independent scalar variable U is referred to as the sample space variable corre-
sponding to u. The significance of the sample space variable U is that it consists of all
possible realizations of the random variable u. Since every event of u can be associated with
a region in sample space, the probability of the event is equal to the region in sample space.
Thus, the probability of the event Ua ≤ u < Ub can be defined as

p{Ua ≤ u < Ub} = Fu(Ub) − Fu(Ua) . (2.54)

The probability density function (PDF) Pu(U) of the random variable u is the derivative of
the distribution function Fu(U)

Pu(U) =
dFu(U)

dU
. (2.55)

It follows that the probability of u in a given interval is equal to the integral of the PDF over
the corresponding region in sample space∫ Ub

Ua

Pu(U) dU = Fu(Ub) − Fu(Ua) . (2.56)

For an infinitesimal region it follows

Pu(U )dU = p{U ≤ u < U + dU} . (2.57)

Since Fu is a non-decreasing function of u, its derivative Pu(U ) cannot be negative

Pu(U) ≥ 0 . (2.58)

14

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



description of turbulent flows

Another fundamental property of the probability function is that it satisfies the normalization
condition ∫ +∞

−∞
Pu(U) dU = 1 , (2.59)

which simply states that the probability of the event −∞ ≤ u < +∞ is certain. Once the
PDF of a variable is known, one may define its moments defined by

un =
∫ +∞

−∞
UnPu(U ) dU , (2.60)

where the overbar denotes the average or expectation of un. The central moments are defined
according to

[u − u]n =
∫ +∞

−∞
(U − u)nPu(U) dU . (2.61)

The mean u of the random variable u corresponds to the first moment (n = 1) and defines
the center of the PDF, in that the first central moment of u is zero (u − u = 0). In general,
let g(u) be a function of the random variable u, then the mean of g is defined as

g =
∫ +∞

−∞
g(U)Pu(U) dU . (2.62)

The fluctuation of u, u′, is defined as the deviation from the mean u. Thus, the instantaneous
realization of the velocity component can be split into its mean and its fluctuation

u = u + u′ . (2.63)

The variance u′2 is the mean of the square of the fluctuation

u′2 = (u − u)2 , (2.64)

and is referred to as the second central moment

[u − u]2 =
∫ +∞

−∞
(U − u)2Pu(U) dU . (2.65)

The square root of the variance,
√

u′2, defines the standard deviation and is a measure of the
width of the probability density function.

Up to this point, only single random variables have been considered. In case of the three-
dimensional Navier-Stokes equations, the velocity components and the pressure depend on
each other and are correlated. Hence, it is not sufficient to determine the distribution function
for each variable separately, since they do not contain information of the joint (simultaneous)
event. This information is provided by the joint distribution function. In the following, the
properties of the joint PDF are discussed by introducing the joint distribution function Fuv
of the velocity components u and v

Fuv = p{u < U , v < V } , (2.66)

where U and V are the sample space variables of the velocity components. The joint PDF of
U and V , Puv(U , V ), is defined by

Puv(U , V ) =
∂2Fuv
∂U∂V

. (2.67)
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