Quantum limited balanced superconducting 380-520 GHz mixer on a silicon membrane and mesoscopic tunnel devices for terahertz frequencies
Contents

1 Introduction and motivation 1
 1.1 Probing the universe 1
 1.1.1 Short historical background and discovery of the interstellar medium 1
 1.1.2 Interstellar molecules, chemical networks and star formation - Tracers and spectral resolution 3
 1.1.3 Comparison of recent and future observational experiments and receiver developments at KOSMA - Need for array compatible heterodyne detectors at 1 THz 5
 1.2 Photon detectors for radio astronomy - Arrays and fundamental sensitivity 10
 1.2.1 Coherent and incoherent detection 10
 1.2.2 Superconductive waveguide mixers on silicon membranes . 14
 1.3 Integrated detectors for heterodyne arrays 19
 1.3.1 Balanced SIS mixers 19
 1.3.2 Terahertz niobium SIS mixers with a niobium-titanium-nitride superconducting tuning circuit and a normal-metal energy-relaxation layer 20

2 Mesoscopic detector elements 25
 2.1 Linear-response theory, fluctuation-dissipation theorem and detector sensitivities 25
 2.1.1 Fundamental sensitivity limit in detector arrays 38
 2.2 Theories of superconductivity 43
 2.2.1 Ginzburg-Landau theory of superconductivity in clean and disordered systems: coherence length, magnetic penetration-depth and supercurrent 43
 2.2.2 The microscopic theory of Bardeen-Cooper-Schrieffer 51
 2.2.3 Interactions between quasiparticles in superconductors and normal metals 60
 2.3 Quasiclassical quantum field theory in superconductors 69
 2.3.1 Green’s functions of superconductivity 69
 2.3.2 Dirty superconductors I - The quasiclassical limit 73
 2.3.3 Dirty superconductors II - Superconducting correlations in superconductor/normal metal proximity systems and boundary conditions 77
 2.3.4 Results for NbTiN/Au bilayer structures 85
3 Design of planar superconducting transmission-lines and circuits 89
3.1 Microwave response of superconductors 89
3.1.1 Complex conductivity - Mattis-Bardeen theory 89
3.1.2 Complex conductivity in proximity and disordered superconductors - Nam theory 95
3.1.3 Superconducting transmission-lines 97
3.2 Balanced-mixer components design 109
3.2.1 Two-junction tuning circuit 109
3.2.2 Current density and tuning-circuit bandwidth 112
3.2.3 Commercial electromagnetic design software packages and their applicability for superconducting circuit engineering 113
3.2.4 Broadband tapered-slotline waveguide antennas 114
3.2.5 380-520 GHz coplanar waveguide 90° RF hybrid-coupler 119
3.2.6 Superconductor-insulator-superconductor circuit and alternating impedance transformer 123
3.2.7 Three-stage coplanar waveguide RF blocking-filter 127
3.2.8 Electromagnetic-field simulation of the balanced-mixer circuit in two different waveguide environments 130
3.2.9 An IF circuit-board for the first experiments 133

4 Experimental setup and measurement procedure 135
4.1 Balanced-mixer dewar assembly 135
4.1.1 Waveguide mixer block assembly and IF circuit-board 139
4.2 Balanced-mixer device chip fabrication 143
4.3 Setup schematic and general measurement procedure 145
4.3.1 Modification of the calibration blackbody-temperatures due to dielectric dewar-windows, IR filters and the beamsplitter 148

5 Characterization of 400-500 GHz planar-circuit balanced SIS mixers in two waveguide geometries 153
5.1 Introduction and comparison to related work 154
5.2 Measurement procedure and data analysis 155
5.3 The non-ideal balanced-mixer device 160
5.3.1 Effect of low NR value on the Y factor 166
5.4 Mixer characterization measurements 166
5.4.1 Balanced-mixer device in a step-discontinuity waveguide mixer-block using a Gunn-driven local-oscillator source 167
5.4.2 Balanced-mixer device in a continuous-waveguide mixer-block using a synthesizer-driven local-oscillator source 172
5.5 Conclusion 178

6 Balanced SIS mixer as an input-noise meter 181
6.1 Introduction 182
6.2 LO input noise-temperature measurements 184
6.3 Influence of increasing LO near-carrier noise power on $T_{rec}(\nu)$ 196
6.4 Conclusion 199
7 Improved Nb SIS devices for heterodyne mixers between 700 GHz and 1.3 THz

7.1 Introduction ... 201
7.2 Device design and conceptual background 203
7.3 Device variations and measurement setup 208
 7.3.1 Fabrication .. 208
 7.3.2 Measurement setup 210
7.4 Experimental results and analysis 210
7.5 Possible adverse effects due to inserted normal metal layer ... 219
7.6 Conclusion .. 220
7.7 Additional material 221

8 Conclusion and Outlook 225

A Properties of noise and measurement methods 231
 A.1 Wiener-Khinchin theorem and noise-power spectral density 231
 A.1.1 Classical formalism 231
 A.1.2 Quantum formalism 233
 A.1.3 Theorems ... 234
 A.2 Measurement of noise-power spectral density 235
 A.2.1 Square law detector - Classical calculation 235
 A.2.2 Incoherent detector - Quantum calculation 236

B Electromagnetic wave propagation in a dielectric medium 241
 B.1 Definitions and assumptions 241
 B.2 Poynting theorem in a homogeneous lossy medium 242
 B.3 Propagation-matrix formalism 244
 B.4 Matching of an electromagnetic field across an interface ... 245
 B.5 Multiple scattering at two dielectric interfaces 247
 B.6 Fresnel formulas - General case of arbitrary incident angle ... 248

C Balanced-mixer characterization measurement results 251
 C.1 Continuation of section 5.4.1 251
 C.1.1 Heterodyne measurements with same mixer bias-polarity ... 251
 C.1.2 Heterodyne measurements with opposite mixer bias-polarity 256
 C.2 Continuation of section 5.4.2 261
 C.2.1 Heterodyne measurements with opposite mixer bias-polarity 261

References .. 266

Acknowledgement .. 281

Financial support ... 285

Erklärung .. 287

Lebenslauf .. 289