Contents

1	Intr	oduct	ion and motivation			
	1.1	Probi	ng the universe			
		1.1.1	Short historical background and discovery of the interstellar medium			
		1.1.2	Interstellar molecules, chemical networks and star forma- tion - Tracers and spectral resolution			
		1.1.3	Comparison of recent and future observational experiments and receiver developments at KOSMA - Need for array com- patible heterodyne detectors at 1 THz			
	1.2	Photo	on detectors for radio astronomy - Arrays and fundamental			
		sensit	ivity	1		
		1.2.1	Coherent and incoherent detection	1		
		1.2.2	Superconductive waveguide mixers on silicon membranes .	1		
	1.3	Integr	cated detectors for heterodyne arrays	1		
		1.3.1	Balanced SIS mixers	1		
		1.3.2	Terahertz niobium SIS mixers with a niobium-titan-			
			ium-nitride superconducting tuning circuit and a normal-			
			metal energy-relaxation layer	2		
2	Mesoscopic detector elements					
	2.1	Linea	r-response theory, fluctuation-dissipation theorem and detec-			
		tor se	nsitivities			
		2.1.1	Fundamental sensitivity limit in detector arrays	3		
	2.2	Theor	ries of superconductivity	4		
		2.2.1	Ginzburg-Landau theory of superconductivity in clean and disordered systems: coherence length, magnetic penetration-			
			depth and supercurrent	4		
		2.2.2	The microscopic theory of Bardeen-Cooper-Schrieffer	Ę		
		2.2.3	Interactions between quasiparticles in superconductors and			
			normal metals	(
	2.3	Quasi	classical quantum field theory in superconductors	6		
		2.3.1	Green's functions of superconductivity	6		
		2.3.2	Dirty superconductors I - The quasiclassical limit	7		
		2.3.3	Dirty superconductors II - Superconducting correlations in superconductor/normal metal proximity systems and bound-			
			ary conditions	7		
		2.3.4	Results for NbTiN/Au bilayer structures	8		

3	Design of planar superconducting transmission-lines and circuits							
	3.1	Alcrowave response of superconductors	39					
		5.1.1 Complex conductivity - Mattis-Bardeen theory 8	39					
		1.2 Complex conductivity in proximity and disordered super-						
		conductors - Nam theory	95					
		1.3 Superconducting transmission-lines	97					
	3.2	Balanced-mixer components design	09					
		$2.2.1$ Two-junction tuning circuit $\ldots \ldots \ldots$	09					
		2.2.2 Current density and tuning-circuit bandwidth 11	12					
		.2.3 Commercial electromagnetic design software packages and						
		their applicability for superconducting circuit engineering . 11	13					
		2.4 Broadband tapered-slotline waveguide antennas 11	14					
		.2.5 380-520 GHz coplanar waveguide 90° RF hybrid-coupler . 11	19					
		.2.6 Superconductor-insulator-superconductor circuit and alter-						
		nating impedance transformer	23					
		.2.7 Three-stage coplanar waveguide RF blocking-filter 12	27					
		.2.8 Electromagnetic-field simulation of the balanced-mixer cir-						
		cuit in two different waveguide environments	30					
		2.9 An IF circuit-board for the first experiments	33					
		···· ·································						
4	Exp	rimental setup and measurement procedure 13	35					
	4.1	Balanced-mixer dewar assembly 13	35					
		1.1 Waveguide-mixer block assembly and IF circuit-board 13	39					
	4.2	Balanced-mixer device chip fabrication 14	43					
	4.3	betup schematic and general measurement procedure $\ldots \ldots \ldots 14$	45					
		.3.1 Modification of the calibration blackbody-temperatures due						
		to dielectric dewar-windows, IR filters and the beamsplitter 14	48					
5	Characterization of 400-500 GHz planar-circuit balanced SIS mix-							
	\mathbf{ers}	two waveguide geometries 15	53					
	5.1	ntroduction and comparison to related work	54					
	5.2	Measurement procedure and data analysis	55					
	5.3	The non-ideal balanced-mixer device	60					
		.3.1 Effect of low NR value on the Y factor	66					
	5.4	Mixer characterization measurements	66					
		.4.1 Balanced-mixer device in a step-discontinuity waveguide						
		mixer-block using a Gunn-driven local-oscillator source 16	67					
		.4.2 Balanced-mixer device in a continuous-waveguide mixer-						
		block using a synthesizer-driven local-oscillator source 17	72					
	5.5	Conclusion	78					
	_							
6	Bala	aced SIS mixer as an input-noise meter 18	31					
	6.1	$ntroduction \dots \dots$	32					
	6.2	O input noise-temperature measurements	34					
	6.3	nfluence of increasing LO near-carrier noise power on $T_{rec}(\nu)$ 19	96					
	6.4	Conclusion	99					

7	Improved Nb SIS devices for heterodyne mixers between 700 GHz				
			201		
	7.1		201		
	7.2	Device design and conceptual background	203		
	7.3	Device variations and measurement setup	208		
		7.3.1 Fabrication	208		
		7.3.2 Measurement setup	210		
	7.4	Experimental results and analysis	210		
	7.5	Possible adverse effects due to inserted normal metal layer	219		
	7.6	Conclusion	220		
	7.7	Additional material	221		
8	Con	clusion and Outlook	225		
\mathbf{A}	Pro	perties of noise and measurement methods	231		
	A.1	Wiener-Khinchin theorem and noise-power spectral density	231		
		A.1.1 Classical formalism	231		
		A.1.2 Quantum formalism	233		
		A.1.3 Theorems	234		
	A.2	Measurement of noise-power spectral density	235		
		A.2.1 Square law detector - Classical calculation	235		
		A.2.2 Incoherent detector - Quantum calculation	236		
в	Elec	tromagnetic wave propagation in a dielectric medium	241		
	B.1	Definitions and assumptions	241		
	B.2	Poynting theorem in a homogeneous lossy medium	242		
	B.3	Propagation-matrix formalism	244		
	B.4	Matching of an electromagnetic field across an interface	245		
	B.5	Multiple scattering at two dielectric interfaces	247		
	B.6	Fresnel formulas - General case of arbitrary incident angle	248		
\mathbf{C}	Bala	anced-mixer characterization measurement results	251		
	C.1	Continuation of section 5.4.1	251		
		C.1.1 Heterodyne measurements with same mixer bias-polarity .	251		
		C.1.2 Heterodyne measurements with opposite mixer bias-polarity	256		
	C_{2}	Continuation of section 5.4.2	261		
	0.2	C.2.1 Heterodyne measurements with opposite mixer bias-polarity	261		
References					
Acknowledgement					
Financial support					
∟r					
Lebenslauf					