

Inhaltsverzeichnis

1	Einleitung					
2	Analytische Modelle zur Berücksichtigung von Nutungseffekten					
	2.1	Besch	reibung der Nutung durch Sub-Domänen	5		
		2.1.1	Lösung der Felddifferentialgleichung für Nutbereich	5		
	2.2	Besch	reibung der Nutung durch Kantenstromdichten	ç		
		2.2.1	Ermittlung der Kantenstromdichte beim Übergang von Luft nach Eisen	Ģ		
		2.2.2	Lösung der Felddifferentialgleichung	13		
	2.3	Berecl	hnungsbeispiel	16		
3	Wirl	pelstro	mverluste in Magneten von permanentmagneterregten Synchronma-			
	sch	inen		21		
	3.1	Geom	etrie und Voraussetzungen	24		
	3.2	Integra	altransformationen zur Berücksichtigung endlicher Abmessungen	26		
	3.3	Analy	tisches Modell mit 1D-Flussdichte- und 2D-E-Feldverteilung	31		
		3.3.1	Bestimmung des Vektorpotentials für E-Feld	32		
		3.3.2	Bestimmung der Verlustleistung	37		
	3.4	Analy	tisches Modell mit 2D-Flussdichte- und 1D-E-Feldverteilung	38		
		3.4.1	Ansatz für Vektorpotential	38		
		3.4.2	Anpassung der Konstanten an Randbedingungen	44		
		3.4.3	Bestimmung der Verlustleistung	48		
	3.5	Analy	tisches Modell mit 2D-Flussdichte- und 2D-E-Feldverteilung			
		3.5.1	Ansatz für das elektrische Feld eines Magnetsegments	51		
		3.5.2	Bestimmung der induzierten Wirbelstromdichte	53		
		3.5.3	Differentialgleichungssystem für magnetisches Vektorpotential	55		
		3.5.4	Bestimmung der Verlustleistung	56		
	3.6	Analy	tisches Modell mit 3D-Flussdichte- und 2D-E-Feldverteilung ohne Berück-			
		sichtig	gung der z-Abhängigkeit in der Systemmatrix	57		
		3.6.1	Ansatz für das elektrische Feld eines Magnetsegments	57		
		3.6.2	Bestimmung der induzierten Wirbelstromdichte	59		
		3.6.3	Differentialgleichungssystem für magnetisches Vektorpotential	61		
		3.6.4	Wahl der anregenden Stromdichten und Anpassung der Konstanten an Rand-			
			bedingungen	65		
		3.6.5	Bestimmung der Verlustleistung	66		
	3.7	Analy	tisches Modell mit 3D-Flussdichte und 2D-E-Feldverteilung mit Berück-			
		-	gung der z-Abhängigkeit in der Systemmatrix	67		
		3.7.1		67		
		3.7.2	Bestimmung der induzierten Wirbelstromdichte			
		3.7.3	Differentialgleichungssystem für magnetisches Vektorpotential			

		3.7.4	Anpassung der Konstanten an Randbedingungen	75
		3.7.5	Bestimmung der Verlustleistung	76
	3.8	Charak	tteristik der Wirbelstromverluste im Magneten unter verschiedenen Rand-	
		beding	ungen	76
		3.8.1	Einfluss der Nutung auf das Flussdichtespektrum	86
	3.9	Verglei	ich der Rechenmodelle	89
	3.10	Verifik	ation durch Messung	99
4	Abs			03
	4.1	Grundl	egende Untersuchung des Schirmungsproblems	
		4.1.1	Einfluss der Schirmdicke	
		4.1.2	Einfluss der Materialparameter des Schirms	
		4.1.3	Einfluss der Materialparameter der Reaktionsplatte	
	4.2	=	schirm	
	4.3	Analyt	isches 3D-Modell des Schirmungsproblems	
		4.3.1	Voraussetzungen und Vereinfachungen	
		4.3.2	Feldansatz für Luftbereiche	
		4.3.3	Feldansatz für Statorbereich	21
			4.3.3.1 Ermittlung von Kantenstromdichten beim Übergang von Luft	
			nach Eisen	
			4.3.3.2 Aufstellen des Differentialgleichungssystems (Statorbereich) 1	
		4.3.4	Feldansatz für Schirm- und Reaktionsplatte	
			4.3.4.1 Vektorpotential für elektrisches Feld	
			4.3.4.2 Vektorpotential für magnetische Flussdichte	
			4.3.4.3 Bestimmung der induzierenden Flussdichten	
			4.3.4.4 Bestimmung der induzierten Stromdichte	
			4.3.4.5 Aufstellen des Differentialgleichungssystems	
			4.3.4.6 Lösung des Differentialgleichungssystems	
			4.3.4.7 Bestimmung von magnetischen Flussdichten und elektrischen	
			Feldstärken	
		4.3.5	Anpassen der Konstanten an Randbedingungen	37
			4.3.5.1 Übergangsbedingung zwischen Regionen mit veränderlicher Per-	
			meabilität	
			4.3.5.2 Aufstellen des Gleichungssystems	
	4.4	•	rickeltes Modell mit 2D-E-Feld	
		4.4.1	Voraussetzungen und Vereinfachungen	
		4.4.2	Feldansatz für Luftbereich	
		4.4.3	Feldansatz für Abschirmplatte	
			4.4.3.1 Induziertes elektrisches Feld	
			4.4.3.2 Differentialgleichungssystem für magnetisches Vektorpotential . 1	
		4.4.4	Feldansatz für Eisenbereich	
		445	Rand- und Übergangsbedingungen	50

	4.5	Schich	tenmodell für Schirmungsproblem	. 151					
		4.5.1	Voraussetzungen und Vereinfachungen	. 151					
		4.5.2	Strombelagsansatz für Schirmschicht	. 151					
		4.5.3	Feldansatz für Luftbereich	. 152					
		4.5.4	Feldansatz für Eisenbereich	. 153					
		4.5.5	Aufstellen der Rand- und Übergangsbedingungen	. 153					
	4.6	Vergle	ich der analytischen Verfahren mit FEM-Berechnungen	. 155					
5	Oberflächenverfahren								
	5.1	Beschi	reibung des Verfahrens	. 167					
		5.1.1	Abbildung des leitfähigen Gebiets durch Netzwerkmodell	. 167					
		5.1.2	Ersetzen des leitfähigen Eisens durch 2-Schicht-Modell	. 173					
		5.1.3	Numerische Lösung des Differentialgleichungssystems	. 174					
		5.1.4	Implementierung in FEM-Programm						
	5.2	Berech	nungsbeispiel	. 175					
6	Zus	ammen	fassung und Ausblick	181					
Symbole und Abkürzungen Abbildungsverzeichnis									
									Tabellenverzeichnis
Lit	I iteraturverzeichnis								