Inhaltsverzeichnis

1	Einle	eitung		1		
2	Analytische Modelle zur Berücksichtigung von Nutungseffekten					
	2.1	Beschr	eibung der Nutung durch Sub-Domänen	5		
		2.1.1	Lösung der Felddifferentialgleichung für Nutbereich	5		
	2.2	Beschr	reibung der Nutung durch Kantenstromdichten	9		
		2.2.1	Ermittlung der Kantenstromdichte beim Übergang von Luft nach Eisen	9		
		2.2.2	Lösung der Felddifferentialgleichung	13		
	2.3	Berech	nungsbeispiel	16		
3	Wirk	elstror	nverluste in Magneten von permanentmagneterregten Synchronma-			
	schi	nen		21		
	3.1	Geome	etrie und Voraussetzungen	24		
	3.2	Integra	ltransformationen zur Berücksichtigung endlicher Abmessungen	26		
	3.3	Analyt	isches Modell mit 1D-Flussdichte- und 2D-E-Feldverteilung	31		
		3.3.1	Bestimmung des Vektorpotentials für E-Feld	32		
		3.3.2	Bestimmung der Verlustleistung	37		
	3.4	Analyt	isches Modell mit 2D-Flussdichte- und 1D-E-Feldverteilung	38		
		3.4.1	Ansatz für Vektorpotential	38		
		3.4.2	Anpassung der Konstanten an Randbedingungen	44		
		3.4.3	Bestimmung der Verlustleistung	48		
	3.5	Analyt	isches Modell mit 2D-Flussdichte- und 2D-E-Feldverteilung	49		
		3.5.1	Ansatz für das elektrische Feld eines Magnetsegments	51		
		3.5.2	Bestimmung der induzierten Wirbelstromdichte	53		
		3.5.3	Differentialgleichungssystem für magnetisches Vektorpotential	55		
		3.5.4	Bestimmung der Verlustleistung	56		
	3.6	Analyt	isches Modell mit 3D-Flussdichte- und 2D-E-Feldverteilung ohne Berück-			
		sichtig	ung der <i>z</i> -Abhängigkeit in der Systemmatrix	57		
		3.6.1	Ansatz für das elektrische Feld eines Magnetsegments	57		
		3.6.2	Bestimmung der induzierten Wirbelstromdichte	59		
		3.6.3	Differentialgleichungssystem für magnetisches Vektorpotential	61		
		3.6.4	Wahl der anregenden Stromdichten und Anpassung der Konstanten an Rand-			
			bedingungen	65		
		3.6.5	Bestimmung der Verlustleistung	66		
	3.7	Analyt	isches Modell mit 3D-Flussdichte und 2D-E-Feldverteilung mit Berück-			
		sichtig	ung der <i>z</i> -Abhängigkeit in der Systemmatrix	67		
		3.7.1	Ansatz für das elektrische Feld eines Magnetsegments	67		
		3.7.2	Bestimmung der induzierten Wirbelstromdichte	70		
		3.7.3	Differentialgleichungssystem für magnetisches Vektorpotential	72		

ix

		3.7.4	Anpassung der Konstanten an Randbedingungen	75
		3.7.5	Bestimmung der Verlustleistung	76
	3.8	Charak	tteristik der Wirbelstromverluste im Magneten unter verschiedenen Rand-	
		beding	ungen	76
		3.8.1	Einfluss der Nutung auf das Flussdichtespektrum	86
	3.9	Vergle	ich der Rechenmodelle	89
	3.10	Verifik	ation durch Messung	99
4	Abs	chirmu	ng von hochpermeablem Material gegen äußere Felder	103
	4.1	Grund	legende Untersuchung des Schirmungsproblems	104
		4.1.1	Einfluss der Schirmdicke	108
		4.1.2	Einfluss der Materialparameter des Schirms	112
		4.1.3	Einfluss der Materialparameter der Reaktionsplatte	113
	4.2	Hybrid	lschirm	114
	4.3	Analyt	isches 3D-Modell des Schirmungsproblems	116
		4.3.1	Voraussetzungen und Vereinfachungen	117
		4.3.2	Feldansatz für Luftbereiche	119
		4.3.3	Feldansatz für Statorbereich	121
			4.3.3.1 Ermittlung von Kantenstromdichten beim Übergang von Luft	100
			4.2.2.2 Aufstellen des Differentielsleichungssystems (Staterherzich)	122 122
		131	4.5.5.2 Aufstehen des Differentiagreichungssystems (Statorbereich)	123 126
		4.3.4	A 2 4 1 Vaktor potential für alaktrisches Fald	120 126
			4.3.4.2 Vektorpotential für magnetische Elussdichte	120
			4.3.4.3 Bestimmung der induzierenden Elussdichten	120
			4.3.4.4 Bestimmung der induzierten Stromdichte	120
			4.3.4.5 Aufstellen des Differentielsleichungssystems	129
			4.5.4.5 Aufsteinen des Differentialgieleinungssystems	130 125
			4.3.4.7 Destimming von magnetischen Elussdichten und elektrischen	133
			4.5.4.7 Bestimmung von magnetischen Flussolenten und elektrischen	126
		125	Annessen der Konstenten en Bendhadingungen	120
		4.3.3	Anpassen der Konstanten an Kandbeumgungen	137
			4.5.5.1 Obergangsbedningung zwischen Regionen nint verandernener Fei-	127
			4.2.5.2 Aufstellen des Gleichungssystems	137
	1 1	Abgau	4.5.5.2 Autstehen des Oferendingssystems	139
	4.4	Abgew	Vereussetzungen und Vereinfechungen	141 171
		4.4.1	Foldenootz für Luftheroich	141 171
		4.4.2	Feldensetz für Absehirmplette	141 142
		4.4.3	1 4 2 1 Induziantes electrisches Feld	143 142
			4.4.2.2 Differential glaighungesystem für magnetisches Valsternetertial	143 1 <i>15</i>
		1 1 1	4.4.5.2 Differentialgielenungssystem für magneusenes vektorpotential .	14J 140
		4.4.4	Pend und Übergengebedingungen	14ð 150
		4.4.3		100

	4.5	Schichtenmodell für Schirmungsproblem								
		4.5.1	Voraussetzungen und Vereinfachungen	. 151						
		4.5.2	Strombelagsansatz für Schirmschicht	. 151						
		4.5.3	Feldansatz für Luftbereich	. 152						
		4.5.4	Feldansatz für Eisenbereich	. 153						
		4.5.5	Aufstellen der Rand- und Übergangsbedingungen	. 153						
	4.6 Vergleich der analytischen Verfahren mit FEM-Berechnungen									
5	Oberflächenverfahren									
	5.1	Beschr	eibung des Verfahrens	. 167						
		5.1.1	Abbildung des leitfähigen Gebiets durch Netzwerkmodell	. 167						
		5.1.2	Ersetzen des leitfähigen Eisens durch 2-Schicht-Modell	. 173						
		5.1.3	Numerische Lösung des Differentialgleichungssystems	. 174						
		5.1.4	Implementierung in FEM-Programm	. 175						
	5.2	Berech	nungsbeispiel	. 175						
6	Zusammenfassung und Ausblick									
Sy	Symbole und Abkürzungen									
Abbildungsverzeichnis										
Та	Tabellenverzeichnis									
Lit	Literaturverzeichnis									

xi