
Chapter1
INTRODUCTION

1.1 Understanding Dependence

In order to understand what dependence means, it is necessary to know
where dependence works on. To make statements about dependence of
certain parameters in a situation (that can e.g. be a measurement in ex-
perimental science or some configuration in a computational system) one
has to compare at least two or more situations with respect to a property.
Clearly, one can not make a statement about dependence in a computa-
tional system by only knowing one single configuration. If for example
we talk about the computational path of any machine model, a situation
can be the configuration of the machine at a certain time. Here, a config-
uration has certain parameters. We say t is dependent on t1, . . . , tn if in
every situation t1, . . . , tn has the same value it follows that also t has the
same value.

In this thesis we call t a variable or term according to the logic and a situ-
ation is called an assignment, hence an assignment is a function that maps
a variables to a value. A set of assignments is called a team. Statements
about dependence are expressed with the dependence atom denoted by

=(t1, . . . , tn, t)

if we want to express that the value of t only depends on the values of
t1, . . . , tn.

Trivially, every statement about dependence holds, if the team is small
enough (at least every dependence holds on singleton teams). This is an
interesting property that is captured by the dependence atom. Thus, an
obvious question is, whether a given formula expressing any property of



2 CHAPTER 1. INTRODUCTION

dependence holds on a model (model checking), or given a formula verify-
ing whether there exists a model that makes the formula true (satisfiability).
These are problems that are considered on different types and extensions
of dependence logics.

In most classical logics there are only assignments to variables that
map one single value to a variable. In dependence logic we have to be
able to formulate several situations, thus we have to talk about several
assignments of variables. A semantics that handles different assignments
is called team semantics. This semantics was introduced firstly by Hodges
in [Hod97a] and [Hod97b]. It works as follows: If we want to evaluate a
formula ϕ on a team T we have to evaluate it on the team as a whole, thus
the assignments can conflict each other. That means in dependence logic
(and also in every extension of it studied in this thesis) a formula ϕ can be
true on every single assignment but false if it is evaluated on several as-
signments of the team. In fact, team semantics is a nonclassical extension
to logic, but it is natural since it even appears in our everyday life as the
following example shows.

Example 1.1.1. Assume one organizes a meeting of five people and only the orga-
nizer knows the exact number of people invited to the meeting. At the beginning
of the meeting the organizer asks “Are we complete?”. No one can answer this
question correctly by himself because no one except the organizer knows whether
there is still a person missing.

Definitely, this question is evaluated in team semantics, because we
have to evaluate the question on the team as a whole. After all the orga-
nizer did not want to know whether any single person is complete by him-
self or herself, he wanted to know, whether the team is complete. Thus,
the answer can only be given, by someone that has information about the
whole group of people. This example illustrates the naturality of team
semantics.

We go one step further. In the next example we illustrate that state-
ments about dependence seem very likely in this context.

Example 1.1.2. We could think of a response to the organizers question like “If
person A joins the meeting depends on whether person B joins the meeting”.
Note, that this gives no information about how it depends, it only states that
there is a dependence at all. Thus, two scenarios are possible.
a) Person A and B like each other, that means, person A only joins the meeting,

if person B joins the meeting as well.

b) Person A and B do not like each other, i.e. A only joins the meeting, if B does
not.



1.2 A Historical Outline on Dependence Logic 3

1.2 A Historical Outline on Dependence Logic

Dependence and independence is a topic of broad interest in every time
of human history. Understanding dependencies of another party such as
another nation or simply another person in many cases leads to a better
understanding of the way of acting of this other party. In negotiations it
is of major importance to have knowledge about the way the opponent
acts. This is in many cases based on dependencies the opponent is in-
flicted with. In a poker game for example, it is always a good strategy to
play unpredictable. This is only achieved when knowing about my own
dependence of my strategy. If I only play for high stakes while having
good cards and risk minimizing while having bad cards makes the strat-
egy predictable. This is however the first idea to optimize the strategy of
course but in case you have a strong opponent the strategy gets obvious.
Thus, one has to vary the own strategy on one hand and on the other hand
one has to be able to predict the way of the opponents acting, basing on
e.g. dependencies.

Since dependence is such an important property there have been sev-
eral approaches to formalize it. Those approaches are necessary in order to
make general statements about dependence, that means what is express-
ible in a certain logic with dependence and how difficult is it to express
it or to check if a statement about dependence is true. In the early 1960’s
there is an approach of Henkin. He considered the dependence of choos-
ing values for quantified variables. Usually e.g. in the following first order
logic (FO) formulae

∀x1∃y1∀x2∃y2ϕ

we have, that the value of, e.g., y2 can be chosen dependent on the value
of x1 or y1. In other words y2 “knows” these values. In order to make
this kind of quantification independent, Henkin introduced a new kind of
quantifier in [Hen61]. This quantifier uses independent lines written as a
matrix to quantify variables with only a partial dependence:

(∀x1 ∃y1
∀x2 ∃y2

)
ϕ. (1.1)

In (1.1) we have that y1 solely depends on x1 and y2 only depends on x2.
Thus we still have the partial dependence from right to left, but the lines
are independent of each other.

In 1989 Hintikka and Sandu introduced independence-friendly logic
(IF ). While quantifying this logic allows to explicitly state on which vari-
ables a certain variable is independent on. The formula



4 CHAPTER 1. INTRODUCTION

∀x1∃y1∀x2∃y2/{x1, y1}ϕ

states that the value for y2 can be chosen independently of x1 and y1. The
variable y2 depends only on x2 here. That means while choosing the value
for y2, the values for x1 and y1 are not known to y2.

Recently, in 2007 Jouko Väänänen introduced dependence logic [Vää07].
Here dependence is explicitly stated but in contrast to dependence-friendly
logic dependence here is expressed inside the formula by the dependence
atom which is a new kind of atomic formula. Dependencies can be ex-
pressed more general as in FO. Namely one can define a function that
gives the dependence between variables without defining the function ex-
plicitly. Dependence logic here behaves like existential quantifying a func-
tion or a relation in existential second order logic ESO, respectively.

It has been shown that IF and D have the same expressive power as
Σ1

1 ≡ ESO. In terms of descriptive complexity both IF and D capture
the complexity class NP. This means that every NP-complete problem is
definable in D and IF .

In 2008 a modal variant of dependence logic (MDL) was introduced
by Väänänen in [Vää08]. Merlijn Sevenster showed that satisfiability is
NEXPTIME-complete for MDL in general [Sev09]. This result was refined
by Peter Lohmann and Heribert Vollmer for sublogics of MDL [LV10].
These fragments were built by restricting the set of operators used in the
formulae. In 2011 E. and Lohmann gave an almost complete analysis of
the model checking for MDL and its operator fragments [EL12].

The framework of dependence logic turned out to be flexible enough
to introduce a new kind of implication, namely intuitionistic implication.
This was introduced by Jouko Väänänen and Samson Abramsky [AV09].
Fan Yang showed [Yan13] that dependence logic with intuitionistic im-
plication is as equivalent in the sense of expressive power as full second
order logic. In other words by adding intuitionistic implication we gain
universal second order quantification.

The aim of this thesis is to give new generalizations and extensions to
first order dependence logic as well as for the modal variant of depen-
dence logic. We investigate the complexity of several well known prob-
lems in computer science on these logics and also compare the logics in
the sense of expressive power.



1.3 Dependence Logic with Quantifier Extensions 5

1.3 Dependence Logic with Quantifier Extensions

Classically in logic as well as in dependence logic there is universal and ex-
istential quantification. There are different kinds of those quantifiers. First
order and second order existential quantifiers are used in order to express
that, e.g., a certain property holds in a certain case (existential quantifica-
tion), or in every case (universal quantification). But in many fields there
are statements made about most cases or statements that use counting.
Therefore one could think about statements made about the parity of a
quantified variable, as for example

There is an even number of primes below 10.

On the other hand, one could think of statements about majorities like

For most natural numbers it holds that they are not primes.

On one hand we give an extension of first order dependence logic that
can quantify the majority of functions that extend a team with a quantifier
called M and on the other hand, we give an extension of dependence logic
that counts parity of team extending functions. Since D itself is equiva-
lent to existential second order logic (ESO) we compare those quantifier
extensions to fragments of second order logic (SO). It turns out, that de-
pendence logic extended by a majority quantifier M (denoted by D(M)) is
equivalent to second order logic extended by a quantifier Most (denoted
by SO(Most)), which is a quantifier that holds if for most relations the for-
mula is true. It has been well studied in [Kon09] that SO(Most) is equiva-
lent to its first order counterpart FO(Most) (since the notion of second or-
der existential quantification can be simulated by the Most quantifier) and
thus equivalent to the counting hierarchy CHwhich was firstly introduced
by Wagner [Wag86]. Hence, the quantifier M adds counting capabilities to
dependence logic.

Counting is an interesting and widely studied property in logic as well
as in complexity theory [HO98, Kon09, KN11]. Thus understanding count-
ing is very fundamental. Adding counting capabilities has deserved a lot
of attention in theoretical computer science.

Now consider the circuit class TC0, which is defined by a polynomial-
sized circuits with constant depth plus majority gates [Vol99]. There are
strict lower bound separations inside TC0 but not above. It is known that
TC0 can be separated from the second level of the exponential time hierar-
chy, but still there is no separation to any lower class known. Thus a very


