
Using Different Representations
of Synchronous Systems in SAL

Manuel Gesell, Felipe Bichued, and Klaus Schneider

TU Kaiserslautern

gesell@cs.uni-kl.de

bichued@rhrk.uni-kl.de

schneider@cs.uni-kl.de

Abstract

In general, synchronous systems can be represented as a set of so-called synchronous guarded

actions (SGAs) that consist of a trigger condition and an atomic action. Whenever the trigger

condition holds, i.e., the guarded action is enabled, then the action is immediately executed.

While the synchronous semantics demands that all enabled actions have to be executed con-
currently within the same variable environment, it is possible for certain sets of guarded actions

to deviate from the synchronous execution scheme without changing the behavior. This is im-

portant to make use of tools like SRI’s Symbolic Analysis Laboratory (SAL) that work with

invariants and guarded actions, but only a subset of the enabled actions are chosen for execu-

tion. If the particular choice of the enabled guarded actions for execution is not determined,

we may consider different choices that might influence the resource requirements needed for

formal verification. In this paper, we therefore investigate how three possible representations

influence the runtime and memory requirements of automatic verification runs of SRI’s SAL.

1. Introduction

The synchronous model of computation [Hal93, BCE+03] has proved to be very convenient for the

development of reactive embedded systems. In particular, this is the case for systems consisting

of application-specific hardware and software since compilers can generate hardware as well as
software from the same synchronous programs. In general, a synchronous system performs its

execution in discrete reaction steps that are considered as clock ticks of a global clock. In each

reaction, all input values are read, and depending on these values, all output values are determined
in addition to the change of the internal state of the system.

Synchronous languages like Esterel [BG92] and Quartz [Sch09] offer the explicit notion of

reaction steps and many convenient statements for the design of reactive systems. The explicit

notion of (logical) time also requires different kinds of assignments like immediate assignments

that assign values in zero time and delayed assignments that assign values with a delay of one time

unit.

13

For safety-critical applications, an important advantage of synchronous languages is the avail-

ability of a precisely defined formal semantics. This allows one to translate programs to state tran-

sition systems and to use formal verification techniques. Model checking procedures [GV08] are

already established and are even integrated within the compilers, e.g., to check for instantaneous

loop bodies, to guarantee the absence of write conflicts and runtime errors, to solve causality prob-

lems, and many other issues that might appear during compilation. However, it is well-known that

the particular system representation is a crucial point for a formal verification task. For example,

even a bad variable ordering in a BDD-based model checker may lead to an exponential blow-up

in run time or memory usage while a better ordering could work efficiently.

In this paper, we therefore explore the possibilities of representing a synchronous system in

SRI’s Symbolic Analysis Laboratory (SAL), and evaluate their effect on the performance of SAL’s

model checker. To this end, we start in all cases with synchronous guarded actions as a general

system representation. Since SAL only supports interleaved guarded actions, we already presented

in [GS13] a possible translation of synchronous guarded actions (SGAs) to SAL’s interleaved
guarded actions (IGAs) to demonstrate that SAL can also be used to verify synchronous systems.
This paper aims at comparing that system representation against alternatives with respect to the

performance of the later model checking. Therefore, the approach presented in [GS13] (GC) will

be compared with two others: One based on SAL’s synchronous composition of modules (SC) and

another one based on a translation to equation systems (ES). Therefore, we implemented the tool

aif2sal that is capable of generating these representations from an SGAs description of a Quartz
program (see Figure 1).

The three transformations GC, SC, and ES are based on different paradigms that lead to different

computations of a macro step in SAL. The ES representation describes the behavior of all SGAs in
a single transition step by describing them as invariants. Therefore, no guarded action is required

and an equation system must be solved in each reaction step. The SC transformation models the

behavior of each variable by a single module containing all guarded actions writing this variable.

The synchronous model of computation assures that only a single guarded action defines the value

of a variable in a reaction step. Hence, in each reaction step all modules execute a single guarded

action synchronously to define the behavior. This obliges SAL to resolve the data-dependencies

between the modules. The GC approach describes the behavior in a single module by IGAs. This
requires the explicit modeling of the data-dependencies as described in [GS13]. Unlike the other

approaches, the behavior of a single reaction step of the original system requires several transition

steps in GC.

Figure 1: Averest/SAL linkage

The paper is organized as follows: the next section describes some preliminaries like the syn-

chronous model of computation, the Averest tool-kit and SRI’s SAL tool. Then, Section 3 presents

related work we found in the literature. The main part of the paper is presented in Section 4, where

14

the above three representations are described. In Section 5, we present experimental results to com-

pare the considered transformations and argue about the most advanced representation. Finally, we

conclude the paper and discuss future work.

2. Preliminaries

In this section, we describe the synchronous model of computation, the Averest system and SAL.

2.1. Synchronous Models of Computation

The execution of synchronous languages [Hal93, BCE+03] is divided into a discrete sequence of

reaction steps that are also called macro steps. Within each macro step, the system reads all inputs

and instantaneously generates all outputs together with the next internal state depending on the

current internal state and the read inputs. To compute the outputs and the next internal state, macro

steps are divided into finitely many micro steps. Micro steps are atomic actions of the programs

like assignments to variables. Since all micro steps of a macro step are executed in the same

variable environment given by their reaction/macro step, all variables have unique values in each

macro step. It may be the case that the trigger condition of an action depends on a variable that

is modified by the action itself. Such cyclic dependencies are considered in the causality analysis

for synchronous programs that checks whether for all inputs, the outputs can be determined in an

order that respects the data dependencies.

2.2. Averest

Averest1 is a framework for specification, implementation and verification of reactive systems and
is developed by our group. The programs are written using the synchronous programming language

Quartz and are translated to the Averest Intermediate Format (AIF), which is a representation of the

program’s behavior in terms of SGAs. An SGA 〈γ ⇒ α〉 contains a boolean guard γ and an atomic
assignment α that is executed whenever γ holds. Assignments can be either immediate 〈γ ⇒ ��τ〉
or delayed 〈γ ⇒ next����τ〉. Both evaluate the right-hand side τ in the current step. While the
immediate assignment transfers the obtained value already in the current step to the left-hand side

�, the delayed assignments transfer the value only in the next macro step to �.

A simple module called ABRO can be seen on the left-hand side of Figure 2. This module has

three inputs (indicated by ?) �, � and �, and one output � (indicated by !). The program waits for
the input events � and � and immediately emits output � as soon as the last one of � and � occurred.

This behavior can be restarted with the reset input �.

The program contains two specifications 	
 and 	�, where the first asserts that either � or b
holds whenever o is emitted. Property 	� asserts that � does not hold in successive points of time.
The ABRO module is compiled to the SGAs shown on the right-hand side of Figure 2. As can

be seen, the guarded actions are separated into control flow and data flow. Control flow actions

are assignments to control flow locations and data flow actions are assignments to local and output

variables. Apart from the control flow locations ��, �� and ��, a new location � (often called

boot-location) is added by the compiler to serve as initial state.

1http://www.averest.org

15

module �����event ����	��
��� �

loop
abort �

��� await���
��

�	� await�	�
emit���
�
� await�
�

� when�
�
� satisfies �

�� � assert A G �� ⇒ � ∨ 	�

�� � assert A G �� ⇒ X ¬��
�

������ ���� �

����
���� �

�� 	�
 � ��� � �!��� 	��"

� � � �� � �!��� 	��"

"���"� �

�#� ��� �	� �
 � "�	�" 	��"

����$
��� � % �
&�& ������� �

����
�" �"���

'
 � ⇒��(���#)'
 �

¬�# ⇒��(����)'
 �

¬�# ⇒��(���)'
 �

¬
∧��∧¬�∨
∧��
∨��∨�	⇒��(����)'
 �

¬
∧�	∧¬	∨
∧��
∨��∨�	⇒��(���)'
 �

¬
∧��
∨�∧��∧	∧�	∨¬��∧	∧�	∨¬�	∧�∧��
⇒��(���
)'
 �

&��� �"���

¬
∧��∧��∧	∧�	∨¬��∧	∧�	∨¬�	∧�∧��⇒�)'
 �

���������������

��� � * � → � ∨ 	

��� � * � → + ¬�
Figure 2: ABRO Example

2.3. SAL

SRI’s Symbolic Analysis Laboratory2 is a framework intended for performing abstraction, program

analysis and model checking, and it provides an intermediate language which will be the target of

our translation process. A typical SAL system is represented by a context containing a set of

modules and assertions. Each module declares a distinct set of inputs, outputs, local and global

variables, as well as definitions (invariants) and transitions. Variables can be either current (X)
or next variables (X ′), where assignments to current variables take place in the current state, and
to next variables in the following state. SAL allows to compose modules either synchronously

(||) or asynchronously ([]). In synchronously composed modules, a transition from each module
is executed simultaneously. With asynchronous composition however, an enabled transition from

exactly one module is executed non-deterministically. Transitions can be written as an equation or

as guarded commands. The equational format defines the trajectory of single variables, while the

guarded commands define single transitions in the system. A guarded command of SAL contains,

contrary to SGAs, a set of assignments and is enabled when its guard evaluates to true. Furthermore,
SAL non-deterministically picks one of the enabled guarded commands and updates the next-

state variables accordingly. The structure and behavior is equivalent to IGAs described in [GS13].
A system without enabled guarded commands leads to a deadlock. A large set of tools such

as symbolic/bounded model checkers, simulators and others, can then be used for analysis and

verification.

3. Related Work

The idea of transforming SGAs to other models of computation was already done before: an auto-
matic translation to SystemC by generating a dynamic schedule for modules in order to preserve

the semantics was presented in [BGS10]; and in [BBS11] SGAs are translated to asynchronous
DPNs.

2http://sal.csl.sri.com/

16

There exists also a similar approach [SB08, BS08] that refines the translation of SGAs to transi-
tion systems at the level of micro steps. The intention of [SB08, BS08] was to use these transition

systems at the micro step level to perform causality analysis by means of theorem proving and

bounded model checking. We follow similar ideas in the GC transformation, but work at a different

level of abstraction, and furthermore, our approach allows us to improve the system representation

by handling e.g. the default reaction in a different way.

The differences between SGAs and Hoare’s parallel commands [Hoa78] are that SGAs do not
have a disjoint set of variables and they communicate over shared variables (broadcast).

In contrast to Dijkstra’s guarded commands [Dij75], our IGAs have only a single repetitive con-
struct consisting of the entire set of IGAs. Hence, our GC translation targets a subset of Dijkstra’s
guarded commands. This is justified since we do not wish to use the guarded actions as primary

input language, and use them rather as intermediate representation.

The Z2SAL project [DNS06, DNS11] connects Z to SAL by defining a transformation to SAL’s

input language. Additionally, we compare different approaches of representing Quartz in SAL.

One of our transformations uses the built-in synchronous-composition operator of SAL similar

to [PSSD00] where dynamic constructs were used to embed the behavior of multi-threaded Java

programs in SAL.

4. Different Representations of Synchronous Systems

In this section, we present three different approaches of describing synchronous systems in SAL’s

input language. To ease the translation process, we have developed a tool called aif2sal, which is
capable of converting AIF to the three different representations in SAL.

4.1. Guarded Commands GC

Guarded commands in SAL are interpreted as interleaved guarded actions (IGAs), meaning that
in each transition step an enabled guard action is non-deterministically chosen to define the step’s

behavior. This is very different from the way that SGAs work and thus many problems have to be
solved when representing a synchronous program as IGAs. These problems are described in detail
in [GS13] and will be summarized in the following.

By executing the guarded actions in an interleaved fashion, a data dependency problem appears

because of the non-deterministic choice of a single action. The IGAs now can execute in arbitrary
orders, including those where a value is not yet present for a specific variable. Furthermore, the

temporal behavior of a synchronous program is violated due to the increased number of steps it

takes to complete a macro step.

γ1 ⇒ � = τ1
...

γn ⇒ � = τn

δ1 ⇒ next��� = υ1
...

δm ⇒ next��� = υm
Figure 3: Guarded Actions for variable �

The key to solve these problems is to modify the guards such that the data dependencies are explic-

itly stated. Hence, the solution of [GS13] represents each SGA containing an immediate assign-
ment by separate IGAs, and all SGAs containing a delayed assignment are composed to a single

17

IGA called conclusion. Additionally, we need to introduce for all variables written by immediate
assignments a new variable, the valid flag �v, that determines the validity of the value contained in

the variable and is used to deactivate all IGAs writing to the corresponding variable � once a value
is determined in the current macro step. Hence, the synchronous guarded actions for the variable

� in Figure 3 are converted into the following IGAs:

¬�v ∧
(∧
v∈read(γ1⇒�=τ1)

vv

)
∧ γ1 ⇒

[
� = τ1
�v = true

]
.
.
.

¬�v ∧
(∧
v∈read(γn⇒�=τn)

vv

)
∧ γn ⇒

[
� = τn
�v = true

]

¬�v ∧
(∧
i=1...n

¬γi
)

⇒ [
�v = true

]

∧
v∈V

vv ⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

.

x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

υ1, if δ1
.
.
.

υm, if δm

defaultAct (x), else

xv =
∨

i=1...m
δi

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Whenever we determined a valid value for � by enabling �v, all IGAs writing � are automatically
deactivated by the term ¬�v. The following term ensures that all values required to evaluate the
IGA are valid. The original behavior is still encoded in γi and the assignment � = τi. Additionally,
the assignment �v = true indicates the validity of � for the current macro step. In case none of
the guards hold, no assignment for that variable takes place in the current macro step and thus it

must contain the default value (e.g. the value of the previous step) – which also means that �v
must be enabled. Therefore, the default value of the variable should be already contained in the

variable �. This is ensured by the conclusion (right-hand side) that executes for all variables the
delayed assignments. There, the default value must be assigned to all variables not written by a

delayed assignment. This is possible, because the value of a variable � is not used unless �v holds.

Additionally, the conclusion initiates the execution of the next macro step by resetting the valid
flags of all variables (not written by delayed assignments).

The SAL GC-representation of our running example has the structure shown in Figure 4. One

can see that only a single valid flag (for the variable �) is required, because all other variables are

written by delayed assignments. Additionally, the specifications were adapted to cover the changed

temporal behavior. All newly introduced immediate states have in common that not all variables

have a valid value and so the adapted specification only requires that the original specification is

satisfied in states where all variables contain valid values.

4.2. Synchronous Composition SC

Another idea is to exploit SAL’s synchronous composition primitive and divide the program into

a set of synchronous modules. To that end, each variable, with the exception of inputs, will be

represented as an independent module, and these modules will be then composed synchronously

to provide the overall system behavior. It is worth noting that the semantics of the synchronous

composition closely matches that of the synchronous model of computation. Since every variable

has a unique value in each reaction step determined by a single SGA every module will execute
exactly one transition.

In contrast to the GC transformation, the SC transformation is just a syntactic rewrite of the

original program, in the sense that no guarded action will be modified. In this approach, data

18

������� MODULE �

BEGIN
INPUT ����� � BOOLEAN
OUTPUT �v � � � BOOLEAN
LOCAL �	�����������v � BOOLEAN
INITIALIZATION
�	 � �� � �� � �� � � � �v � �����

TRANSITION

� ¬�v ∧ ¬�∧��∧��∧�∧��∨¬��∧�∧��∨¬��∧�∧��� −→
�v � � ���� �

�� � ���� �

� ¬�v∧��∨¬��∧��∧�∧��∨¬��∧�∧��∨¬��∧�∧���� −→
�v � � ���� �

� �v −→
��� � ¬�∧���∨��∧��∧�∧���∨��∧��∧¬���∨��∧��∧¬�����
��� � ¬�∧��∧¬�∨�∨¬�	�
��� � ¬�∧��∧¬�∨�∨¬�	�
�	� � ���� �

�� � ���� �

�v � � ���� �

�

END�
�� � THEOREM ������ � AG [¬ov U (o⇒ a ∨ b)]�
�� � THEOREM ������ � AG [¬ov U (o⇒ X¬o)]�

Figure 4: GC Representation

dependencies are resolved internally by SAL. The synchronous composition combines all defini-

tions, initializations and transitions of the composed modules, taking care that the combination is

still casually correct. In case inconsistencies in the conjunction of the transitions are found, proof

obligations are generated, but this problem does not apply here because the Averest compiler rules

out causally incorrect programs.

The translation to SC consists of separating SGAs by their written variable into individual mod-
ules as depicted in Figure 5a (for variable o). Each module will have every other variable that is
read by the SGAs as input and a single output being the writable variable itself. All SGAs for each
variable are then collected, and used to properly initialize the module and to describe its transitions

as guarded commands.

��� � MODULE �

BEGIN
INPUT �� �� �� ��� �� � BOOLEAN
OUTPUT � � BOOLEAN
INITIALIZATION

��¬�∧��∧��∧�∧��∨¬��∧�∧��∨¬��∧�∧����
TRANSITION

 ¬�∧��∧��∧�∧��∨¬��∧�∧��∨¬��∧�∧���
−→ �� � �����

� ELSE −→ �� � ����� �

END

(a) SC: Single module

�	�� � MODULE � !!!

���� � MODULE � !!!

���� � MODULE � !!!

���� � MODULE � !!!

��� � MODULE � !!!

������ � MODULE � �	��

"" ����

"" ����

"" ����

"" ��� �

�� � THEOREM ������ � AG(o⇒ a ∨ b)�
�� � THEOREM ������ � AG(o⇒ X¬o)�

(b) SC: Composition

Figure 5: Single Module and Synchronous Composition

In Figure 5b, we see how such a synchronous composition might look like. We simply compose all

writable variables (��, ��, ��, �� and �) into a single module. It is important to note that a com-

posed module will be deadlocked whenever at least one of the modules is deadlocked, hence we

19

introduce an ELSE guard to guarantee that there is always a transition to be taken. Moreover, the
ELSE guard will assign the default value to the variable, which is effectively the default reaction.

4.3. Equation System ES

This transformation converts the SGAs into equations (one per variable). It is usually not trivial to
generate such an equation system, and a corresponding transformation is already implemented in

the Averest system. The translation of SGAs to equations will generate exactly one equation for
each output, local and location variable. Furthermore, an additional carrier variable must be added

for each variable to which an immediate and delayed assignment is made. The carriers will simply

hold the value until the next point of time.

The execution of an equation system under the synchronous model of computation is then as

follows: in every macro step new input variables are read and all of the equations are evaluated

with regards to the newly read values. The resulting right-hand side of each equation is then

assigned to its respective variable.

This can be easily done in SAL by using definitions instead of guarded commands. Definitions

in SAL are of the form 〈X = ����〉 for the current state or 〈X ′ = ����〉 for the next state. In
contrast to guarded commands, which are picked individually, all definitions are evaluated in every

state and the resulting value for the expression ���� is assigned to the variable. Once we have the

������ � MODULE �

BEGIN
INPUT 	
 �
 � � BOOLEAN
OUTPUT � BOOLEAN
LOCAL �	
 ��
 ��
 �� � BOOLEAN
INITIALIZATION ��� � �	 � �� � �� � ������

DEFINITION � ¬�∧�	∧�	∧�∧��∨¬�	∧�∧��∨¬��∧	∧�	��
TRANSITION

��� � �����

�	� � ¬�∧�	∧¬	∨�∨¬���
��� � ¬�∧��∧¬�∨�∨¬���
��� � ¬�∧���∨�	∧�	∧�∧���∨��∧��∧¬�	�∨�	∧�	∧¬�����

END�
�� � THEOREM ������ � AG(o⇒ a ∨ b)�
�� � THEOREM ������ � AG(o⇒ X¬o)�

Figure 6: ES: Single module

SGAs given as equations, the translation to SAL is straightforward. We will have a single module
containing the original inputs and outputs and all other variables as local variables, as seen on

Figure 6. SAL supports in the DEFINITION section only assignments to variables of the current
state, hence a distinction between INITIALIZATION/TRANSITION and DEFINITION is nec-
essary. All equations defining a next-state variable must be initialized in the INITIALIZATION
section and described in the TRANSITION section. Hence, the immediate assignments will be rep-
resented as an invariant in the DEFINITION section and will be evaluated in every state, including
the initial one. The INITIALIZATION section will be evaluated in the initial state and contains
the initialization of variables written by delayed assignments like the location variables and the

20

carriers3 to their default values. The TRANSITION section contains equations for evaluating the
next-state.

Note that problems like the default reaction were already handled during the translation to an

equation system by simply adding an extra branch to every equation, assigning the variable’s de-

fault value whenever none of the previous conditions hold.

5. Experimental Results

The presented transformations were used to verify and benchmark the experiments using SAL’s

symbolic model checker (sal-smc). All experiments4 were performed on a Intel® CoreTM i5-3470

CPU @ 3.20GHz using Ubuntu 13.04.

In the following, we briefly describe each example, in terms of what they do, number of variables

in the original Quartz program, number of SGAs after compilation, and the number and kind of
properties that were verified for each. This gives an idea on the complexity of each example:

P #SGA #GC #SC #ES GC SC ES

ABRO 7 4 6(12) 5 0.11 0.06 0.05

ABROM[M=10] 23 2 14(36) 13 0.74 1.13 0.50

ABROM[M=13] 29 2 17(45) 16 4.27 7.92 3.27

AuntAgatha 2 4 3(4) 3 0.12 0.07 0.09

VendingMachine 23 23 12(32) 11 1.14 0.15 0.07

LightControl 36 25 12(47) 11 1.79 0.44 0.40

MinePumpController 42 41 22(61) 21 7.60 0.22 0.09

RSFlipFlop 7 2 5(11) 8 53.51 1.18 1.18

MemoryController 41 28 17(87) 31 407.95 42.93 3.42

IslandTrafficControl 83 62 35(109) 36 504.64 62.40 1.94

Figure 7: Size of the Representations and Execution Times (in sec) of SAL

ABROM is a larger version of the ABRO example which waits forM events in parallel instead of just two.

It contains 22 SGAs forM = 10 or 28 forM = 13, 2 inputs, 1 output and 3 safety properties.

AuntAgatha is an implementation of an old puzzle where the reader has to find who killed Aunt Agatha
in Dreadsburry Mansion based on simple boolean statements. The problem is represented by 2 SGAs,
21 inputs, 1 output and 3 boolean properties.

VendingMachine is a vending machine controller that dispenses gum in reaction to the insertion of nick-
els and dimes, which is described by 2 SGAs, 2 inputs, 2 outputs, and 3 safety properties.

LightControl models the light control system of a room with regards to to its occupancy. Its functions
include switching the light on/off, dimmer control and notification of alarms. The implementation

contains 36 SGAs, 22 inputs, 12 outputs, and 10 safety specifications.

3Carriers are present only when the program utilizes immediate and delayed assignments for a single variable, which

is not the case for ABRO.
4All examples a publicly available under http://www.Averest.org/examples.

21

MinePumpController starts or stops the pump of a mine according to alerts issued by the carbon dioxide
and methane monitors, as well as the water level. It contains 40 SGAs, 27 inputs, 30 outputs, and 7
safety specifications.

RSFlipFlop describes a RS-Flipflop with NOR-gates of equal delay, modeled as a single macro step. It
contains 7 SGAs, 2 inputs, 2 outputs, and 8 specifications (three safety and five co-Büchi).

MemoryController models a memory controller providing mutual exclusion by maintaining region locks
for addresses. The implementation contains 41 SGAs, 5 inputs, 12 outputs, and 8 safety specifications.

IslandTrafficControl: An island is connected via a tunnel with the mainland. Inside the tunnel is a single
lane so that cars can either travel from the mainland to the island or vice versa, which is signaled by

traffic lights on both ends of the tunnel. It is represented by 75 SGAs, 15 inputs, 32 outputs, and 13
specifications (eleven safety and two Büchi) modeled in 5 modules.

The table in Figure 7 roughly measures the size of the original program regarding the number of

SGAs (#SGA), as well as the size of each representation in terms of the number of guarded com-
mands (#GC) for GC, number of modules and guarded commands (#SC5) for SC, and the number

of equations (#ES) for ES. Interestingly, ABROM contains only 2 guarded commands in GC, while

having about 20 SGAs in the original Quartz program. This happens because ABROM only fea-
tures delayed assignments, which according to the transformation described in 4.1, are combined

into a single guarded command called conclusion. This also explains the particularly good perfor-
mance for GC on verifying it (Figure 7). The number of equations used in ES corresponds with the

number of modules used for SC. For each variable an equation is contained in ES and SC contains

besides the module for the synchronous composition for each variable a module. In case a carrier

variable has to be introduced for ES, they will differ.

P
GC SC ES

#V #N #V #N #V #N

ABRO 34 786 30 616 14 183

ABROM[M=10] 80 2289 98 3855 52 1221

ABROM[M=13] 98 3339 122 3381 64 2065

AuntAgatha 100 1434 40 130 48 180

VendingMachine 130 10855 138 4496 22 384

LightControl 98 7108 114 6908 44 837

MinePumpController 126 98949 136 8500 36 636

RSFlipFlop 36 1883 38 929 24 1010

MemoryController 158 931422 188 92815 98 48134

IslandTrafficControl 144 773001 212 58217 58 30401

Figure 8: BDD size in terms of the number of variables (#V) and number of nodes (#N)

As for the actual performance of each representation, Figure 7 shows that ES is generally faster

than GC or SC. In the worst case (IslandTrafficControl), it was more than 250 times faster than an

equivalent program in the GC representation and roughly 32 times faster than SC. Not surprisingly,

the complexity of the properties can also increase the verification time in certain cases, as with the

5The number inside parenthesis is the sum of the number of guarded commands in the context.

22

