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Figure 1.1: Schematic visualization of the data collection process.

et al. [2007]), or to assist archaeologist in finding ancient buildings (see, e. g., Daniels [2004]

and Jol [2009]). For this thesis, I am defining information as humanly buried linear objects,

e. g., pipes and cables, while all other object types are regarded as being clutter. Such clutter

definition includes especially objects such as cans and land mines, as those show similar visual

evidences compared to linear objects, though they are not of importance within the scope of

my thesis. I am dealing with the buried pipe localization problem only.

Subsoil analysis by means of GPR data has become increasingly important in the last years,

for its inexpensive capability to infer structures in subsoil. Having exact knowledge of the

underground actually decreases maintenance costs on reconstruction works and accelerates the

overall process for both, companies and engineers. The reason is simply stated by considering

the usage of excavators, which may be used for a longer period of time before switching

to manual soil digging in the very last moment for preventing damage to subsoil objects.

Radar measurements are usually visualized as images, so-called radargrams, which contain

geometric shapes of a certain kind to be identified. The most important geometric structure

within the scope of my work to be identified is the hyperbola.

Figure 1.1 visualizes the data collection process. Therein, a measurement vehicle moves

along the horizontal x direction, while at fixed intervals a radar wave is emitted in subsoil

(y-axis). Such a radar wave propagates spherically in subsoil, while for two-dimensional vi-

sualization purposes, one can consider the propagation being a half-circle only. Whenever the

radar wave hits an object, e. g., the pipe in the figure while the pathway of the wave is denoted

by the dashed line, some part of it is reflected, while another proportion continues its propaga-

tion (not shown). The reflected energy (reflection intensities at certain ‘pixel positions’ within

the radargram image) along with its characteristic pattern correlates with the type of the buried

object. This results in higher reflection intensities for those objects which are dissimilar from

their surrounding medium, e. g., a solid pipe compared to surrounding subsoil structures. The

reflected energy is recorded and displayed at its corresponding wave travel time index (a depth

index), denoted as the vertical solid line in the figure. Such a measurement at one position is

called an A-Scan. Stacking multiple of these measurements for individual positions one after

the other results in a radargram image, also being called a B-Scan. Three of those measure-

ments are visualized in the figure. In this thesis, I will be using the term lane to refer to a

single measurement drive, being the consecutive measurement of individual A-Scans at fixed

intervals.
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I will show throughout my thesis, and especially in chapter 4, that the interpretation of

GPR data is a non-trivial task, also for the following reasons: (a) one needs to deal with pre-

viously unknown, unstructured subsoil structures and heterogeneous soil in general, which

obscures the hyperbolic reflection patterns, and (b) one usually needs to apply site-dependent

preprocessing techniques, to augment hyperbolic structures and to suppress unwanted arti-

facts. These obstacles render the easily phrased task of ‘detecting hyperbolic reflection pat-

terns in image data’ a highly non-trivial task. I am aiming at assisting the hyperbola detection

task by means of (semi-)automated detection models.

The data measurement process is usually performed by measuring multiple lanes in a par-

allel manner, resulting in multiple radargram images for a single measurement site. From an

analysis of these radargram images, one is able to derive, e. g., supply maps depicting the

locations of buried pipe structures, which may readily be used by on-site engineers when re-

construction works take place. My thesis presents reliable techniques to infer the location of

a buried pipe on a radargram image alone, by presenting techniques for both, sparse (chapter

6) and dense (chapter 7) data analysis. Those techniques correspond to both, supervised and

unsupervised Machine Learning techniques.

The analysis of GPR data, as an example setting for object detection in images, has been

performed within the project ‘Adaptive contactless Ground Pentrating Radar’ - AcoGPR, last-

ing from October 2011 till September 2013. An overview of the problems and aspects tackled

is given by Seyfried et al. [2012].

A short note on terminology
My thesis is approaching the GPR data analysis problem from the Machine Learning per-

spective. From the application setting, it was required to review and compare literature from

this interdisciplinary domain. This results in difficulties when using, citing and embedding

the terminology as used in related work.

As an example, LeCun et al. [1998] use the term ‘energy’ to denote a loss function (in

Machine Learning terminology) to be minimized. However, from the ‘radar perspective’, the

term ‘energy’ corresponds to a well-defined measure of the radiated electromagnetic radiation

or of the signal received by the antenna, respectively. The radiated ‘power’ is directly con-

nected to the electric and magnetic fields of the electromagnetic radiation, whereas ‘energy’

integrates ‘power’ over time. To describe the propagation of electromagnetic waves in the in-

vestigated structures (pavement, soil, underground supply lines, etc.), the natural measure of

‘received signal strength’ would be ‘power’. In the context of pulse radar, however, it is more

appropriate to use the ‘energy’ of the radar signal as measure of ‘signal strength’, because this

more closely reflects the actual process of the sampling and analog-to-digital conversion of

the signal.

In my thesis, I am not concerned with physical details of the radar system. For all aspects

being specific to an underlying ‘antenna system’ which is used to measure the radar data, I

am referring to Daniels [2004] and Jol [2009] who both have a much more comprehensive

overview of the details of individual radar systems.

Instead, my thesis focuses on the analysis of GPR data from the Machine Learning point

of view only: I will be treating the data as being a priori given. I am focusing on their

interpretation and analysis by means of (semi-)automated Machine Learning techniques only.

This has consequences in the precise usage of terminology when talking about radar-specific
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Figure 1.2: Adapted CRISP-DM for my analysis of CERD - Complex Engineering Raw Data.

aspects of the overall analysis pipeline. As an example, subsection 4.2.2 on page 70 discusses

strategies to preprocess radar data to enhance the visibility of subsoil structures: This is not

only affected by the subsoil structure, but is also affected by the physical fact that the antenna

system has an influence on the quality of the measurement data. To this end, I would like to

thank my reviewers for outlining those parts in this thesis which were less precise. I reworked

the corresponding sections for the final print.

1.2 Thesis Overview
I will present the outline of my thesis both, within the context of the CRISP-DM (Cross

Industry Standard Process for Data Mining) process model for analysing data in general, as

well as sequentially, by stating their content, year of development, and their prior publication

status. Figure 1.2 shows the CRISP-DM process model for the context of this thesis, which I

adapted and extended in order to suite the following presentation.
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• Business / Problem Unterstanding

This chapter (chapter 1) has informally introduced the GPR analysis problem, whereas

chapter 2 presents a formal definition of the problem.

• Data Understanding / Analysis

A thorough data analysis is conducted in chapter 4. Therein, I will give a brief overview

of the phenomena and artifacts being present in my current data, which have influenced

my decisions when building data analysis models in the second part of my thesis.

• Data Preparation

Chapter 5 presents a semi-manual data labeling approach, which was required due to

the characteristics of my data at hand. The individual, model-specific data preparation

for learning and applying Machine Learning models and methods is discussed in the

individual chapters 6, 7 and 8.

• Data Modeling

I will be presenting data analysis models and methods in chapters 6, 7 and 8, whereas

chapter 9 presents a follow-up technique, which can be applied, once object locations

are found.

• Evaluation

While individual aspects will be evaluated in the corresponding individual chapters, I

will be performing a large-scale analysis in chapter 8.

• Deployment

Individual software prototypes are deployed in individual use cases, which are described

in section 3.8 on page 56. Chapter 9 presents an approach for a follow-up data analysis,

which may be applied once object locations are known.

• Data & Framework

Chapter 3 presents my conceptual framework along with its technical implementation,

which has been used for realizing and implementing all methods presented in my thesis.

Let me note that the analysis and visual presentation, as shown in the individual chapters

of my thesis, is primarily based on real world in-house data from a project partner. Without

loss of generality, all my methods and techniques allow for an application in comparable

application domains as well.

In sequential order, my chapters are developed and relate to each other as follows:

• Chapter 2 is newly developed for my thesis and formalizes the data analysis problem.

• Chapter 3 shows my efforts within the last seven years for developing a software frame-

work suitable for running large scale Machine Learning experiments. The core compo-

nent, the Bootstrap library, was released in autumn 2012 as Open Source software and

available at Busche [2013].
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• Chapter 4 is newly developed for my thesis and presents a thorough data analysis for

my data at hand.

• Chapter 5 has been largely extended for presentation in this thesis, has been initially

published in Busche et al. [2013a] and was presented at KDML 2013. The study was

performed in four months in winter 2012 / 2013. It represents my approach for obtaining

high-quality data labels for my data.

• Chapter 6 has been extended for presentation in my thesis, was published in Busche

et al. [2012a] and performed in winter 2011 / 2012. It presents analysis methods for

hyperbola detection from sparse data.

• Chapter 7 corresponds to the work as presented in Busche et al. [2013b]. It corresponds

to efforts spent in spring / summer 2013 and presents an unsupervised approach for

identifying hyperbolic reflection patterns in radargram images.

• Chapter 8 presents a large-scale evaluation and is split up into two conceptual parts.

The first part of evaluating the manual annotations as obtained in chapter 5 is accepted

at KDML 2013 and published in Busche et al. [2013a]. The second part is submitted

along with the achievements of chapter 7 and published as Busche et al. [2013b].

• Chapter 9 has been published in Busche et al. [2012b] within the context of an image

reconstruction framework and has been extended for presentation in this thesis. It cor-

responds to efforts spent in summer 2012 and presents an approach for estimating the

exact curvature of reflection hyperbolas based on dense image data.

Chapter 10 concludes my thesis according to my claimed contributions in the next section

and states five important aspects which directly allow for a continuation of my studies.

Please note that the manual annotations as obtained in chapter 5 have not been available

when developing the contents of chapters 6, 7 and 9. Therefore, the evaluations presented

therein only focus on simulated data, or show a qualitative evaluation on real world data.

1.3 Contributions

My thesis makes contributions to the current state of the art in almost all following chapters.

Though I will be using the term ‘we’ for presenting the content in chapters 2 to 9, you should

keep in mind that all aspects, insights and findings were - to the best of my knowledge -

developed all by myself, unless otherwise explicitly noted or cited. Specifically, I will be

stating individual contributions explicitly at the beginning of each chapter. From a broad

perspective, my thesis contributes the following:

• Creation of ground truth data for analysing GPR data

I will be gaining a high quality ground truth data for my current GPR data in chapter 5

and show their suitability in chapter 8.
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• Structured Analysis of intuitive GPR data analysis approaches

I will be investigating the hyperbola estimation problem in various aspects in both one-

dimensional (chapter 6) and two-dimensional (chapters 7, 8 and 9) scenarios. The hy-

perbola estimation techniques are considered on both, sparse and dense data. I am

investigating their robustness, e. g., to the data sampling process, when influenced by

either or both, noise and jitter. All presented methods are based on a thorough data

analysis as presented in chapter 4. Methods and techniques are presented from the per-

spective of the easily phrased task of finding hyperbolic reflection patterns in images.

For approaching a solution, I am analysing intuitive approaches to this task.

• Conceptual framework design for raw data analysis

I am presenting a flexible framework for conducting Machine Learning experiments in

chapter 3. It allows for seamlessly considering many-to-many relationships between

all, data, labels, and metadata.

1.4 Published Work

Some parts of my thesis are already published, e. g., in conference proceedings, as follows:

• Busche et al. [2009] present prototypes and end-user software, which have influenced

the development of my conceptual framework in chapter 3.

• Busche et al. [2012a] present a sparse analysis approach for hyperbola detection and

was revised for presentation in my thesis in chapter 6.

• Busche et al. [2012b] present a general framework for radargram image reconstruction

and has been extended for my thesis in chapter 9.

• Busche [2013] is an online documentation of my Bootstrap library, as documented in

section 3.6 on page 45.

• Busche et al. [2013b] compares both, the Hough Transform and the Kirchhoff Migra-

tion, and is presented in detail in chapter 7.

• Busche et al. [2013a] present my approach for obtaining an accurate radargram labeling.

It is presented with advanced statistics and deeper general analysis in chapter 5.

Within the last five years of research in the lab, I furthermore coauthored the following

papers which did not fit as a core contribution in my thesis. I need to note that from all those

papers, synergies arose while working on individual topics of my thesis.

• Ruth Janning, Andre Busche, Tomas Horvath, Lars Schmidt-Thieme (2013): Buried

Pipe Localization Using an Iterative Geometric Clustering on GPR Data, Artificial In-

telligence Review, Springer.
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• Ruth Janning, Tomas Horvath, Andre Busche, Lars Schmidt-Thieme (2012): Pipe Lo-

calization by Apex Detection, in Proceedings of the IET international conference on

radar systems (Radar 2012), Glasgow, Scotland.

• Ruth Janning, Tomas Horvath, Andre Busche, Lars Schmidt-Thieme (2012): GamRec:

a Clustering Method Using Geometrical Background Knowledge for GPR Data Prepro-

cessing, in Artificial Intelligence Applications and Innovations (IFIP Advances in Infor-

mation and Communication Technology 381), Springer, Heidelberg, Halkidiki, Greece,

pp. 347–356.

• Artus Krohn-Grimberghe, Andre Busche, Alexandros Nanopoulos, Lars Schmidt-Thieme

(2011): Active Learning for Technology Enhanced Learning, to appear in Proceed-

ings of the European Conference on Technology Enhanced Learning (EC-TEL) 2011,

LNCS, Springer.

• Andre Busche, Artus Krohn-Grimberghe, Lars Schmidt-Thieme (2010): Mining Music

Playlogs for Next Song Recommendations, in Workshop Proceedings of Knowledge

Discovery, Data Mining, Maschinelles Lernen 2010 (KDML 2010).

• Nguyen Thai-Nghe, Andre Busche, Lars Schmidt-Thieme (2009): Improving Academic

Performance Prediction by Dealing with Class Imbalance, in Proceedings of the 9th

IEEE International Conference on Intelligent Systems Design and Applications (ISDA

2009), IEEE Computer Society, pp. 878–883.



This chapter formalizes the GPR data analysis problem, which was introduced in the last

chapter by specializing it as a subtask of the more general radar data analysis problem. The

formalization presented here is applicable for any analysis of two-dimensional GPR data, e. g.,

for land mine detection, or leakage detection, though being specialized in section 2.5 for the

actual GPR subtask tackled in this thesis: the pipe recognition problem.

The outline of this chapter is visualized in Figure 2.1 and comprises three states, along with

four transitions to be discussed in the following sections:

• The Real World Situation corresponds to the final goal of the GPR data analysis process,

as discussed in this thesis. The real world situation is derived by interpreting the output

of Machine Learning techniques to be developed.

• The Measured Situation is gained by performing radar measurements on targets present

in the real world. Examples include raw radar data measurements, e. g., from air traffic

control or - for our case - Ground Penetrating Radar data.

• The Machine Learning Interpretation corresponds to the data interpretation of the mea-

sured situation and is dependent on a certain application scenario, e. g., the deduction

of airplane locations out of air traffic control data, or the location of buried objects out

of GPR data. For a robust and reliable interpretation in varying situations, it probably

has to be complemented by probabilistic models, capable of establishing a hypothesis

based on prior knowledge (a mapping from input features to labels).

This chapter first discusses the transition from real world situations to measured situations

in section 2.1. The requirements for applying Machine Learning techniques to any problem

are discussed in section 2.2. Sections 2.3 and 2.4 subsequently formalize the transition from

9
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Figure 2.1: Visualization of the abstract (Ground Penetrating) Radar data analysis process:

based on a real world situation, an antenna is used to obtain a measured situation.

Such a situation is converted into a suitable format / interpretation for applying

Machine Learning techniques which are able to output a hypothesis on the actual

real world situation.

the continuously measured situation to a suitable discrete Machine Learning interpretation.

The actual problem tackled in this thesis is defined in subsection 2.5.

The contribution of this chapter is the following:

• we define a formalism for the analysis of GPR data for its later use throughout this

thesis.

2.1 Radar Data Analysis
The most general definition of Engineering Data Analysis in our sense is the detection of

certain aspects within Complex Engineering Data which is obtained while measuring certain

real world objects. While Complex Engineering Data in general may correspond to nearly all

kinds of sensor data measured, e. g., over time and / or space, in various application domains,

our special focus in this thesis will be the analysis of radar data sampled over time at different

locations, though further example domains will be presented to show the generality of some

of our proposed techniques and methods.

The general process of obtaining radar measurements is to emit a radar wave using an

‘emitting antenna’ and to record the load (voltage) being present at a ‘receiving antenna’ by

sampling over time. Example domains for the application of radar technology include air

traffic control and, as tackled in this thesis, subsoil imaging. One may instantly visualize such

a measurement as a time-vs-intensity plot, or after performing a Fourier Transform, as an
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amplitude-vs-frequency diagram. Alternatively, one may also directly sample the amplitude

in the frequency domain at certain measurement locations. Our concrete problem at hand

tackled in this thesis is the analysis of GPR. We refer to the term ‘Ground Penetrating Radar’

as being the application of radar technology for analysing subsoil structures. As radar waves

in general propagate in the whole three-dimensional space, we will be using the term GPR to

denote those radar technologies which are constrained to the task, e. g., by adding an isolation

to the overall system to reduce the propagation of the wave to free air.

The quality of GPR measurements in general is influenced by many factors, including (a)

the kind and design of the antennas used, (b) their operating frequencies and emitting energy,

(c) their relative spatial location, (d) the first ground layer, e. g., concrete or asphalt, (e) subsoil

types, e. g., sand, loam and water, (f) relative differences in physical properties, e. g., between

(d) and (e), as well as (g) the size of the buried object.

This thesis is not concerned with details about physical aspects influencing radar measure-

ments in general, but with their semi-automated analysis. Anyhow, some physical aspects

need to be shown to outline and augment difficulties, and to serve as a motivation on why cer-

tain problems have been tackled in such a way. To this (physical) end, we will merely focus

on intuitive explanations of effects rather than on their exact formalization. As such, we will

consider the measured radar data ‘as is’, without any possibility to improve their quality by

means of, e. g., exchanging physical components while data measurements take place.

The general aim of radar data analysis is the inference of real world objects (e. g., their

location, shape, etc.) based on the measured radar data. Depending on the antenna used,

each single radar measurement (in the frequency domain) is usually present in the domain of

complex values C. According to Daniels [2004], p. 251, the resultant radar measurements are

a combination of each individual component which is used when building the overall antenna

system. As we are aiming at analysing the radar measurement data by means of Machine

Learning methods, we will not further elaborate on individual components as well as their

individual influences to the measurement process. We rather refer the interested reader to

Daniels [2004] who has a much more comprehensive overview of antennas as we are able to

provide here.

If we denote the set of (arbitrary) individual real world objects byO, any o ∈O corresponds

to a single real world object. Examples for o ∈ O include, e. g., a single pipe of certain length,

direction and location on earth, or a land mine of certain (relative) depth, diameter and ori-

entation. Now, let the power set of O, P(O), denote any combination of real world objects,

whereas an o ∈ P(O) denotes a certain, fixed combination of real world objects. We may

define m to be an antenna which may be used to measure an arbitrary structure o ∈ P(O) as

follows:

Definition 2.1 (Antenna). Let m denote an arbitrary antenna function alike those defined
in Daniels [2004], chapter 2 and section 7.2 therein. The antenna then maps any real world
object structure o ∈P(O) into a partial observation of a multidimensional measurement space
Mn, for n≫ 0. Each spatial location v ∈Mn is mapped to a single, complex observation c ∈C
as follows:

m ∶ P(O)→Maps(Mn→C) (2.1)


