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Statistical Relational Learning (SRL) has proved successful to learn efficiently
from the large amount of interlinked information available, for instance on the
Web. SRL approaches are capable to deal with the inherent noise of large hetero-
geneous relational datasets, which includes partial inconsistencies, ambiguities,
or duplicate entities. Factorization models have proven to be powerful models for
relational learning, providing highly competitive prediction performance while be-
ing able to scale to large dataset sizes. However, new paradigms are still needed
towards statistical and computational inference based on relational data.

1.1 Multi-relational learning

Statistical machine learning models (Hastie et al., 2009) assume that data points
in a dataset are all sampled independently from each other but from the same dis-
tribution, which is known as the independent and identically distributed (iid) as-
sumption and that data instances are represented as points in a high-dimensional
space. This largely simplifies statistical inference and has enabled many practical
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applications of machine learning models However. One of its implications is that
the models are able to exploit attribute information about the instances but ig-
nores any information about the relationships between them. However many real
world datasets contain rich relational structure and knowing how different data
points are related, does provide useful information about them. For instance,
when predicting the topic of a Web document, it is useful to know the topics of
the documents it is connected to through hyperlinks; also, in a social network
environment, the interests of the friends of a given user, are a good indicator of
his/her own interests. To see how this is important, take as an example the task
of predicting the blood type of a person. Knowing the blood type of a person x

does not provide a priori any information about the blood type of another person
y. However if it is known that x is the father of y, then the blood type of x does
provide some indication on the likely blood type of y. In statistical terms, let P
be a probability distribution, B(x) ∈ {a, b, o} a variable denoting the blood type
of x and F (x, y) ∈ {0, 1} a variable denoting whether x is the father of y. Then,
for a typical iid model,

P (B(y)|B(x)) = P (B(y))

since the model assumes that B(y) and B(x) are independently sampled.
A relational model is a model capable of considering relationships between

instances like the father-of relation denoted by the variable F (x, y). Since the
blood type is a genetic characteristic, knowing that F (x, y) = 1 means that B(y)
and B(x) are not independent anymore:

P (B(y)|B(x), F (x, y) = 1) �= P (B(y)) .

This of course models the data in a better way. The independence assumption
of iid models makes it easier to compute the joint distribution P (B(x), B(y)):

P (B(x), B(y)|F (x, y)) = P (B(x)|F (x, y))P (B(y)|F (x, y)) = P (B(x))P (B(y))

whereas for the relational model the joint distribution is given by:

P (B(x), B(y), F (x, y)) = P (B(y)|B(x), F (x, y))P (B(x)|F (x, y))P (F (x, y)) .

Note that instead of simply multiplying the marginals P (B(x)) and P (B(y)),
the conditionals have to be defined and computed. This difference might not
look big on this toy example but for moderate scale datasets it might render such
distribution infeasible to represent and compute. The challenge is to design a
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model that compactly represents information like F (x, y) for a large dataset. Also
the conditionals P (B(y)|B(x), F (x, y)) and P (B(x)|F (x, y)) need to be defined,
as well as scalable strategies to learn their parameters and make inference about
them. This is sensible in real world datasets because a single entity instance can
be related to a number of different instances through a variety of relationships.
To have an idea of how crucial this is for machine learning models let us take a
look at a simple likelihood function of a parameter vector Θ given a dataset D.
The likelihood can be written as:

L(Θ|D) = P (D|Θ)P (Θ) =
(∏

d∈D
P (d|Θ)

)
P (Θ) .

The probability P (D|Θ) could only be simplified in the product above because
of the iid assumption on the data points d ∈ D. Assume now that we have a
non-iid dataset D = {d1, d2, d3}, then P (D|Θ) is now:

P (D|Θ) = P (d1|d2, d3,Θ)P (d2|d3,Θ)P (d3|Θ)

One can easily see that, for a small dataset it is infeasible to compute the
likelihood. From this discussion, two basic problems arise when dealing with
relational data: (i) how to compactly represent a joint distribution of model and
data with relational information and (ii) develop models for which inference is
feasible.

The first problem was originally approached by using first order logic as a
representation formalism (Muggleton & De Raedt, 1994). The Inductive Logic
Programming (Muggleton & De Raedt, 1994) is a general approach to learn first
order logic inference rules from relational databases.

While this approach has the advantage that the models are easily interpretable
and understandable by humans, it has the drawback that logic based methods
are not able to deal with incomplete or noisy data. This seriously limits their
application to real world problems. In order to overcome this problem, Statistical
Relational Learning (SRL) models (Friedman et al., 1999; Getoor & Taskar, 2007;
Kersting, 2006; Neville et al., 2003) combine knowledge representation formalisms
like first-order logic with probabilistic graphical models. A number SRL models
have been proposed like the Bayesian Logic Programs (Kersting, 2006) and the
Markov Logic Networks (Richardson & Domingos, 2006). At the same time, non-
parametric bayesian approaches like IRM (Kemp et al., 2006) and IHRM (Xu
et al., 2006) have been proposed for relational learning.
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1.1.1 Factorization models for Multi-relational data

Although powerful, general and expressive, SRL models still suffer from scalabil-
ity issues. Recently, multi-relational factorization models have shown to scale well
while providing good predictive performance and are currently considered as the
state-of-the-art for SRL tasks (Jenatton et al., 2012; Nickel et al., 2011; Singh &
Gordon, 2008b). Factorization models for multi-relational data associate entities
and relations with latent feature vectors and define predictions about new rela-
tionships through operations on these vectors (e.g., dot products). Nickel et al.
(2011) showed that these models are strongly competitive against MLNs while
they have much better scalability. Singh & Gordon (2010) provide some insight
about why factorization models work well with relational data. Basically, a fac-
torization model assumes that data points are a priori related and that they are
only independent given the latent features. Using the bayes theorem this results
in a model which considers relationships between entities in the data but can also
be learned using the machinery developed for models under the iid assumption.
To be more clear, in the blood type example, a factorization model would assign
latent features ϕ(x), ϕ(y) to x and y respectively. Given the latent features the
blood types of both instances are independent:

P (B(y)|B(x), ϕ(y), F (x, y)) = P (B(y)|ϕ(y))

The latent features ϕ can be easily computed, for instance by maximum likelihood
estimators based on the relational data. Since the data points are independent
given the latent features, it is true that P (D|ϕ) =∏d∈D P (d|ϕ).

Although vastly studied, most of the work on factorization models for rela-
tional learning focused on how the prediction function looks like, i.e. whether to
consider three or two way interactions (Jenatton et al., 2012), which kind of latent
features to employ, e.g. whether to use feature vectors or matrices (Nickel et al.,
2011) or the usage of only non-negative features (Takeuchi et al., 2013), whether
to use link functions (London et al., 2012) and so on. Other aspects of the rela-
tional learning problem were either not considered or not yet fully investigated.
For instance, most of the available relational data come only with positive obser-
vations. Since usually machine learning models need both positive and negative
examples for training, this issue needs to be closely examined. Another aspect
not fully addressed is the fact that in most of the multi-relational learning tasks,
predictions are to be made for multiple target relations. State-of-the-art models
are optimized for a loss that is the (weighted) sum of the losses on each relation.
How to carefully optimize each relation individually is still an open issue. This
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thesis discusses how the state-of-the-art factorization models look like, identifies
open problems in the field and approach them in a principled way.

1.1.2 Applications of Multi Relational Learning

One question that can be asked is: is there enough relational information avail-
able so that it is worth to develop models capable of exploiting such data in large
scales? The answer is yes. Mining multi-relational data with noise, partial in-
consistencies, ambiguities, or duplicate entities, has gained relevance in the last
years and found applications in a number of tasks. There is a plethora of datasets
containing relational information, especially on the Web. One prominent exam-
ple is the Semantic Web Semantic Web’s Linked Open Data (LOD) initiative
where the data consists of triples containing a predicate relating a subject and an
object. Example of large LOD bases are DBpedia1 and YAGO (Suchanek et al.,
2007). The task of LOD mining can be useful for statistically querying such
databases (Drumond et al., 2012) and for predicting new triples (Drumond et al.,
2012; Nickel et al., 2012).

Another broad application area for relational learning methods are recom-
mender systems (Koren et al., 2009). The task of recommender systems can
be seen as the prediction of a relation between users and items. Often, additional
relational side information about users is available such as friendship relationship
between them and about items, such as, for instance, which movies share the same
director. This additional information can be exploited by multi-relational models
for improving the recommendation performance (Lippert et al., 2008; Singh &
Gordon, 2008b) or for alleviating cold-start problems (Krohn-Grimberghe et al.,
2012).

Natural language processing is another field where the datasets available
contain lots of relational information. For instance, relationships between words
like the subject and object of a verb can be predicted using multi-relational models
(Jenatton et al., 2012; McCray, 2003). Other example of tasks involving relational
data are protein-interaction prediction (Lippert et al., 2008), mining of
geopolitical information (Rummel, 1999) and entity linking (Shen et al.,
2012).

1http://dbpedia.org/
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1.2 Contribution

Although a number of relational models have been proposed in the last years,
there are still gaps in the state-of-the-art which need to be investigated. The main
goal of this thesis is to provide a cohesive view of the state-of-the-art, identify
such gaps and propose solutions to close them. Specifically, our contributions are
summarized as follows:

• Formalize the relational learning problem and study the state-
of-the-art under a single notational framework. We propose a for-
malization for representing multi-relational data and the multi-relational
learning problem. State-of-the-art models are described under a single no-
tational framework which makes it possible to identify redundancies (similar
or equivalent models) and open problems not yet properly addressed in the
literature.

• Study the problem of learning from positive only data in the con-
text of multi-relational models. We investigate the impact of explicitly
considering the open-world semantics of many datasets in the loss function.
We argue why the evaluation protocols usually used in the literature are not
suitable for evaluating models on data with only positive observations and
propose a more suitable evaluation procedure. We also adapt approaches
from the item recommendation community to the multi-relational learning
problem and evaluate them.

• Propose a new approach for learning models for multiple target
relations. A new factorization approach that optimizes directly for a num-
ber of target relations is proposed. We argue that the models should be
optimized for the best performance on each relation individually. We show
how this approach can improve state-of-the-art performance.

• Apply multi-relational factorization models to semi-supervised bi-
nary classification. The semi-supervised classification problem is formal-
ized as a multi-relational learning problem using our proposed notational
framework. We propose a new semi-supervised classification approach,
namely PNT-CMF, a factorization model that collectively factorizes the
predictor, neighborhood and target relation and devise a learning algorithm
for it.
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• Empirical evaluation and analysis. The proposed methods are evalu-
ated using both small and large publicly available data sets. The proposed
methods are compared against state-of-the-art methods. We empirically
show that, in most of the cases, the proposed methods can achieve better
prediction performance than their competitors and scale to large problems.

1.3 Submitted and Published Work

The contributions of this thesis were published in international conferences. The
list of publications is as follows:

• Lucas Drumond, Steffen Rendle and Lars Schmidt-Thieme (2012). Predict-
ing RDF triples in incomplete knowledge bases with tensor factorization. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC 12, 326331, Riva Del Garda, Italy.

The content of this paper is mostly covered in Chapter 3.

• Lucas Drumond, Lars Schmidt-Thieme, Christoph Freudenthaler and Artus
Krohn- Grimberghe (2014). Collective Matrix Factorization of Predictors,
Neighbor- hood and Targets for Semi-Supervised Classification. In Proceed-
ings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, PAKDD 2014, 286297, Tainan, Taiwan.

The content of this paper is covered in Chapter 5.

Also the following paper, which covers the content of Chapter 4, is under the
revision process for publication:

• Lucas Drumond, Lars Schmidt-Thieme, Ernesto Diaz-Aviles. Optimizing
Multi-Relational Factorization Models for Multiple Target Relations. sub-
mitted.

During the time of my doctoral studies I co-authored further publications
that, although not covered in this thesis, are related to or have influenced the
work presented here.

• Josif Grabocka, Lucas Drumond, Lars Schmidt-Thieme (2013): Supervised
Dimensionality Reduction Via Nonlinear Target Estimation, in Proceedings
of the 15th International Conference on Data Warehousing and Knowledge
Discovery, DaWaK 2013.
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• Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Lars Schmidt-Thieme
(2012): Using factorization machines for student modeling, in Workshop
and Poster Proceedings of the 20th Conference on User Modeling, Adapta-
tion, and Personalization, Montreal, Canada.

• Ernesto Diaz-Aviles, Lucas Drumond, Zeno Gantner, Lars Schmidt-Thieme,
Wolfgang Nejdl (2012): What is Happening Right Now ... That Interests
Me? Online Topic Discovery and Recommendation in Twitter , Proceedings
of the 21st ACM International Conference on Information and Knowledge
Management (CIKM 2012).

• Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, Wolfgang Ne-
jdl (2012): Real-Time Top-N Recommendation within Social Streams ,
Proceedings of the 6th ACM International Conference on Recommender
Systems (RecSys’12).

• Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Lars Schmidt-
Thieme (2012): Personalized Ranking for Non-Uniformly Sampled Items,
Journal of Machine Learning Research Workshop and Conference Proceed-
ings.

• Artus Krohn-Grimberghe, Lucas Drumond, Christoph Freudenthaler, Lars

Schmidt-Thieme (2012): Multi-Relational Matrix Factorization using Bayesian
Personalized Ranking for Social Network Data , Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining.

• Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Lars Schmidt-
Thieme (2011): Bayesian Personalized Ranking for Non-Uniformly Sampled
Items, in KDD Cup Workshop 2011, San Diego, USA.

• Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Lars Schmidt-Thieme
(2011): Multi-Relational Factorization Models for Predicting Student Per-
formance, in KDD 2011 Workshop on Knowledge Discovery in Educational
Data (KDDinED 2011). Held as part of the 17th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining.

• Timo Reuter, Philipp Cimiano, Lucas Drumond, Krisztian Buza, Lars Schmidt-
Thieme (2011): Scalable event-based clustering of social media via record
linkage techniques, in Fifth International AAAI Conference on Weblogs and
Social Media.
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• Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Artus Krohn-Grimberghe,
Alexandros Nanopoulos, Lars Schmidt-Thieme (2011): Factorization Tech-
niques for Predicting Student Performance, to appear in Educational Rec-
ommender Systems and Technologies: Practices and Challenges (ERSAT
2011): Santos, O. C. and Boticario, J. G. (Eds.), IGI Global.

• Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Alexandros Nanopou-
los, Lars Schmidt-Thieme (2011): Matrix and Tensor Factorization for Pre-
dicting Student Performance, in Proceedings of the 3rd International Con-
ference on Computer Supported Education (CSEDU 2011). Best Student
Paper Award.

• Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle,
Lars Schmidt-Thieme (2010): Learning Attribute-to-Feature Mappings for
Cold-Start Recommendations, in Proceedings of the 10th IEEE Interna-
tional Conference on Data Mining (ICDM 2010), Sydney, Australia.

• Nguyen Thai-Nghe, Lucas Drumond, Artus Krohn-Grimberghe, Lars Schmidt-
Thieme (2010): Recommender System for Predicting Student Performance,
in Proceedings of ACM RecSys 2010 Workshop on Recommender Systems
for Technology Enhanced Learning (RecSysTEL 2010), Elsevier Computer
Science Procedia, pp. 2811-2819.

1.4 Chapter Overview

The thesis is organized as follows:

• In Chapter 2 a formalization for the relational learning problem is pro-
posed and the state-of-the-art is discussed and rewritten under the proposed
formalization. This allowed to identify similarities between various models
and gaps in the current technology.

• Chapter 3 investigates the impact of considering positive only observations
on the loss function. It builds on previous work from the recommender
systems literature on learning from positive only instances (Rendle et al.,
2009a) and further investigates this issue on LOD datasets.

• A new framework for multi-relational learning is proposed in Chapter 4.
This chapter investigates the problem of making predictions for multiple
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relations and proposes to employ a different set of parameters in the pre-
diction function per target relation, so that the model can be optimized
for the best performance on each relation individually instead of the best
average performance over the target relations.

• Chapter 5 presents an application of multi-relational factorization models
to a standard machine learning problem, namely semi-supervised classifi-
cation. The problem is formulated as an instance of a relational learning
problem and a new semi-supervised classification model is proposed, which
is based on a factorization model. Experiments on real world datasets show
that the model outperforms state-of-the-art semi-supervised classifiers.

• Finally, Chapter 6 puts all the proposed methods into context for com-
parison and conclusion. We also give an outlook in this area and raise some
works for the future.
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