
1 Introduction

The turbulent motion of fluids and scalars is a highly complex problem. It is still
one of the unsolved problems of classical physics, cf. Nelkin (1992) and Shraiman
and Siggia (2000), and the description remains challenging. The understanding of
turbulent flows and turbulent mixing is of great interests for many applications.
Prominent examples are the turbulent combustion of chemical reactants and the
dynamics of the atmosphere or the oceans. In those cases the evolution of the scalar
affects the turbulent flow itself. Here, we focus on the case where the scalar is both
conserved and passive and does not affect the flow field.
The main difficulties regarding the statistical description of turbulent flows origi-

nates from the non-locality and non-linearity of the governing equations. Turbulent
flows are characterized by a very great number of degrees of freedom resulting in a
wide range of interacting time and length scales. Therefore, a theory for turbulent
flows must be a statistical one. Due to the non-locality it is customary to examine
turbulent flows by means of two-point statistics. Most understanding of turbulence at
high Reynolds numbers is based on the scaling theory developed first by Kolmogorov
(1941a,b) and extended later to scalars by Obukhov (1949b) and Corrsin (1951).
Based on dimensional arguments, this theory relates the statistics of velocity or scalar
increments to the mean energy or scalar dissipation. By the Kolmogorov-Obhukov-
Corrsin (KOC) theory the information about the local structure of the turbulent
field is lost when taking ensemble averages over fixed separation distances. This issue
was overcome by Wang and Peters (2006, 2008) by the theory of dissipation elements.
Here, two-point statistics are calculated along gradient trajectories that connect
local minimum and local maximum points in the scalar field. The spatial region
formed by the ensemble of all gradient trajectories sharing the same extreme points
is called dissipation element. They may be parameterized by the linear separation
distance and the scalar difference between the extreme points. By this approach
the linear separation distance itself becomes an intrinsic stochastic quantity that is
determined by the turbulent field. In the present thesis we propose to decompose
the signal of a passive scalar along a straight line into piece-wise monotonously
increasing or decreasing line segments that start at a local minimum point and end
at a local maximum point or vice versa. These line segments can be understood
as one-dimensional dissipation elements. Thereby, we retain the property that the
decomposition is determined intrinsically by the turbulent field, but because the
decomposition is one-dimensional it can be easily related to conventional two-point
statistics in the sense of the KOC theory.
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1 Introduction

At high Reynolds numbers, turbulent flows exhibit strong spatial and temporal
fluctuations. The large structures of the flow at an integral length scale depend
on the boundary conditions and cannot be considered as universal. On the other
hand according to Kolmogorov’s similarity hypotheses, cf. Kolmogorov (1941a,b),
under the condition of sufficiently high Reynolds numbers, the small-scale structure
of turbulent flows is assumed to become statistically isotropic and universal. In this
case, it is expected to find generally valid statistics and scaling relations, as proposed
by Kolmogorov’s 2/3-law. However, small-scale statistics are affected by strong
fluctuations of the dissipation; an effect that is called internal intermittency. Thereby,
small-scale statistics, that may be described by the probability density function (pdf)
of the velocity or scalar increments, depend on scale. At large separation distances
this pdf is Gaussian but for separation distances in the inertial subrange it exhibits
strong deviations from Gaussianity with progressively longer stretched-exponential
tails. The non-Gaussianity becomes even more pronounced toward small scales where
the scalar increment can be interpreted as a derivative. The similarity hypotheses
propose an universal shape of the pdf of the scalar increment, where a normalization
solely by standard deviation accounts for the dependence of the scale. However, the
strong fluctuations of the dissipation destroy small-scale universality. This renders
the similarity hypotheses invalid for moments larger than the second order. The
deviations from the KOC prediction can be further observed by the anomalous
scaling of the moments of the structure functions, or alternatively, by the Reynolds
number dependence of the higher order non-dimensional moments.

In the course of this thesis we take the classical KOC theory as starting point to
examine turbulent mixing of passive scalars. The results of this thesis strongly rely on
Direct Numerical Simulations (DNS) that have been conducted for various Reynolds
numbers with a Taylor based Reynolds number between 88 and 529. We solve for an
incompressible, statistically homogeneous isotropic velocity field, and additionally,
we solve for a statistically homogeneous passive scalar with imposed uniform mean
gradient. In the course of the first chapter we introduce the governing equations,
characteristic numbers and statistical tools. In the second chapter we describe
the numerical algorithms, i.e. the pseudo-spectral method and the time stepping
schema, of the newly developed highly-accurate flow solver. Then parallelization
strategies, code design and code performance are presented. In the third chapter we
present characteristic properties of the DNS simulations and conduct a comprehensive
validation by means of theoretical results, experiments, and DNS results from other
authors. In chapter 4 we derive a generalized evolution equation for the even
moments of the scalar increment that accounts for large scale effects. This equation
is interpreted as a scalar energy scale-by-scale budget equation. It is first evaluated
by means of DNS and later applied in filtered form to a-priori and a-posteriori
studies of Large Eddy Simulations. Additionally, this equation is the starting point
to examine the Reynolds number dependence of scalar structure functions in chapter
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6. In chapter 5 we introduce the method of turbulent line segments and conduct by
means of DNS a statistical analysis of the parameters chosen to describe the line
segments. The respective joint pdfs and marginal pdfs are computed and resulting
conditional moments are compared with a focus on the Reynolds number dependence.
Additionally, the method of turbulent line segments lead to a novel description of the
physics behind cliff-ramp structures and provides an estimate for the length scale at
which large gradients occur. In chapter 6 we examine the universality of small scales
by line segments and conventional statistics, where Kolmogorov’s phenomenology is
adapted to the method of line segments. Based on conditional statistics we show that
an intermediate length scale has a major contribution to the gradient of line segments
and that a scale similarity between the moments of mean gradients and the moments
of the local gradients exists. We propose a presumed pdf that allows us to compute
gradient statistics based on the principle of decomposition and reconstruction of line
segments. Furthermore, we adopt the scale-by-scale scalar energy budget equation
derived in chapter 4 to show that the non-universality of higher order moments
originates from a coupling of dissipative effects to the inertial subrange. Finally, in
chapter 7 a brief summary of the main results is given.

1.1 Governing Equations

1.1.1 Velocity Field

We assume that the motion of the fluid is governed by the Navier-Stokes equations
and shall restrict ourselves to incompressible and Newtonian fluids. If so, the
Navier-Stokes1 equations read

∂uj

∂t
+ ui

∂uj

∂xi
= − ∂p

∂xj
+ ν

∂2uj

∂x2
i

+ fj , j = 1, 2, 3

∂ui

∂xi
= 0 ,

(1.1)

where p is the pressure, obtained by dividing the dynamic pressure by the density ρ;
ν is the kinematic viscosity, and uj(x, t) the Eulerian velocity field, which depends on
position x and time t. fj denotes an external forcing which acts on large scales only.
The Navier-Stokes equations contain all necessary information to fully characterize
the motion of turbulent flows. For solving eq. 1.1 adequate initial and boundary
conditions must be specified. For simplicity we assume periodic boundary conditions,
where all dependent variables fulfill the condition

ui(x1 + n1L,x2 + n2L,x3 + n3L) = ui(x1,x2,x3) , (1.2)

1The standard rule for summation over repeated indices applies.
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for all x and all integers n. The period L is taken as 2π. Throughout this work, we
further restrict ourselves to statistically isotropic velocity fields. In that case, we do
not need to distinguish between mean and fluctuating quantities, and therefore uj

and p denote the velocity and the pressure fluctuations, respectively. The Navier-
Stokes equations reveal two important mathematical properties: The non-linearity
of the advective term and the non-locality of the pressure term. By taking the
divergency of eq. 1.1 and assuming that the forcing term is rotational, we obtain the
so called Poisson equation for the pressure

∂2p

∂x2
i

= − ∂ui

∂xj

∂uj

∂xi
, (1.3)

where we have exploited solenoidality of uj . For periodic domains, the Poisson
equation can be inverted by applying a Fourier transform to eq. 1.3. It follows that

p̂κ = 1
κ2F

(
∂ui

∂xj

∂uj

∂xi

)
. (1.4)

The forward Fourier transform is denoted by F and κ is the modulus of the wavevector
κ. The solution of the Poisson equation is defined up to an additive constant, since
p̂0 is arbitrary. Equation 1.4 illustrates the non-locality of the pressure field by the
application of the Fourier transform.

1.1.2 Scalar Field

Additionally, we consider the motion of a conserved passive scalar Φ(x, t), governed
by the advection-diffusion equation

∂Φ

∂t
+ ui

∂Φ

∂xi
= D

∂2Φ

∂x2
i

, (1.5)

where D is the molecular diffusivity. Equation 1.5 is linear in terms of the scalar
Φ(x, t), but Φ(x, t) is coupled through the convective term in a non-linear way to
the velocity field ui(x, t). The scalar is passive which means that the motion of the
scalar has no impact on the velocity field. Furthermore, the scalar is conserved,
because eq. 1.5 contains no source or sink term. Examples of scalar turbulence
are the temperature field or the motion of a non-reactive contaminant when the
concentration is so low that it has no dynamical effect on the flow field.
In order to keep the scalar in a statistically steady state a uniform mean gradient

is imposed on the scalar field. To this end the scalar field is decomposed into mean
and fluctuating components, i.e.

Φ(x, t) = Γ x2 + φ(x, t) . (1.6)
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Here, Γ is the magnitude of the uniform mean scalar gradient and φ(x, t) denotes
the fluctuating scalar field. Due to the linearity of eq. 1.5, Γ can be taken as unity
without loss of generality. By means of eq. 1.6, we can rewrite eq. 1.5 in terms of
the scalar fluctuation

∂φ

∂t
+ ui

∂φ

∂xi
= D

∂2φ

∂x2
i

− Γ u2 . (1.7)

1.1.3 Characteristic Numbers

The governing equations can be rewritten in normalized form by introducing a
characteristic velocity scale U , a characteristic length scale L and a scalar reference
value Φref . With x̃i = xi/L, ũi = ui/U , t̃ = tL/U , p̃ = p/U2 and f̃i = fiL/U2, we
obtain for the Navier-Stokes equations

∂ũj

∂t̃
+ ũi

∂ũj

∂x̃i
= − ∂p̃

∂x̃j
+ 1

Re
∂2ũj

∂x̃2
i

+ f̃j . (1.8)

Only one non-dimensional number, namely the Reynolds number Re = UL/ν,
appears. The scalar transport equation reads in normalized form

∂Φ̃

∂t̃
+ ũi

∂Φ̃

∂x̃i
= 1

Re
1
Sc

∂2Φ̃

∂x̃2
i

, (1.9)

where the Schmidt number, defined as Sc = ν/D appears as additional non-
dimensional quantity. The product of Reynolds and Schmidt number is defined
as the Peclet number Pe. The Peclet number characterizes the interplay between
advection and diffusion effects and can be expressed as

Pe = ReSc =
O(ui

∂φ
∂xi

)

O(D ∂2φ

∂x2
i

)
∝ UL

D
. (1.10)

1.2 A Statistical Description of Turbulence

Turbulent flows are governed by deterministic equations, cf. eqs. 1.1 and 1.5. But
under the condition of high Reynolds numbers, turbulent flows evolve in a complex
spatially and temporally stochastic way. The Reynolds number, as the most impor-
tant non-dimensional number to characterize flows, can be interpreted as the ratio
of inertial forces to viscous forces acting on a fluid element. When the Reynolds
number is small the viscous forces damp perturbations and the flow remains in a
deterministic laminar state. When the Reynolds number exceeds a critical value
the flow becomes unstable and a transition from laminar flow to a turbulent flow
with strong fluctuations takes place. However, turbulent flows are not fully random
and the presence of coherent structures indicate a certain level of organization or
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symmetries in a statistically sense. In this section we will introduce the mathematical
tools for the statistically description of turbulent flows.

1.2.1 Random Variables

In turbulent flows the variables ui(x, t), p(x, t) and φ(x, t) are random variables.
A random variable φ can be completely characterized by its probability density
function fφ(ψ), where ψ is the sample-space variable corresponding to φ. The mean
value of the random variable can be obtained by

〈φ(x, t)〉 =
∫

ψfφ(ψ;x, t)dψ , (1.11)

and the nth order moment of the random variable is defined by

〈φn(x, t)〉 =
∫

ψnfφ(ψ;x, t)dψ . (1.12)

The random variable is called centered if the mean of the first moment 〈φ〉 equals
zero. The centered second moment

〈
φ2〉 is called variance, and the square-root of

the variance is called standard deviation and is denoted by σφ. The dimensionless
quantities S =

〈
φ3〉 /

〈
φ2〉3/2 and F =

〈
φ4〉 /

〈
φ2〉2 are called skewness and flatness,

respectively.
The mean value of φ(x, t) can also be obtained directly from a series of numerical

or experimental data. In the case of an instationary process the averaging procedure
has to be repeated over N realizations

〈φ(x, t)〉 = 1
N

N∑
i

φi(x, t) (1.13)

and is called ensemble average. For statistically stationary flows the temporal average
can be obtained by

〈φ(x)〉 = 1
Δt

∫ t+Δt

t

φ(x, t′)dt′ . (1.14)

The ergodic theorem states that for a stationary process the temporal and the en-
semble average yield the same result. An ergodic variable becomes both uncorrelated
and statistically independent with itself for large time differences.

1.2.2 Statistical Symmetries

The Navier-Stokes equations reveal several symmetries. Although generally a single
realization of a turbulent field exhibits no obvious symmetries, the averaged quantities
reveal statistical symmetries. Turbulent flows are typically described by statistical
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methods, like central moments, pdf equations, or two-point correlations. Statistical
symmetries can be exploited to simplify these equations and reduce the number of
independent variables.
Statistical stationarity2 holds when the n-point pdf fn of a random variable u(x, t)

is independent of time, i.e.

fn(u1,x1, t1; · · · ;un,xn, tn) =
fn(u1,x1, t1 + τ ; · · · ;un,xn, tn + τ) .

(1.15)

with an arbitrary time shift τ . Homogeneity correspond to stationarity in space:
A n-point pdf of a centered random variable is independent regarding a shift r in
space, i.e.

fn(u1,x1, t1; · · · ;un,xn, tn) =
fn(u1,x1 + r, t1; · · · ;un,xn + r, tn) .

(1.16)

As consequence, all central moments are invariant regarding space-translation of
their arguments. We restrict ourselves here to centered random variables and allow
gradients of mean quantities, but require that gradients of mean quantities are
constant. Statistical invariance regarding rotation and reflection is called isotropy

fn(u1, · · · ,un; r1, · · · , rn−1) =
fn(Du1, · · · ,Dun;Dr1, · · · ,Drn−1) ,

(1.17)

where D is an arbitrary transformation D ∈ O(3), which is the full rotation group.
Due to homogeneity and isotropy the mean of a vectorial quantity disappears, i.e.
〈u〉 = 0.

2For brevity in the following we will omit the word “statistically”

7





2 Direct Numerical Simulation of Turbulent Flows

Even for the simplest turbulent flows, an analytical solution of the Navier-Stokes
equations is not known. Therefore, a solution of the Navier-Stokes equations can only
be obtained by numerical methods. Direct numerical simulation (DNS) solves the
Navier-Stokes equations for all scales down to the Kolmogorov length and provides a
complete description of the flow, where the three-dimensional flow fields are known
as a function of space and time. Because of growing computational capabilities DNS
of turbulent flows has become an indispensable tool. cf. Siggia (1981) and She et al.
(1990).

In the course of this chapter we present the techniques used to numerically solve
the Navier-Stokes equations as well as the evolution equation of a passive scalar.
All results presented in this thesis rely on DNS and much effort has been spent to
develop an accurate, highly optimized code for the simulation of turbulent flows.

2.1 Pseudo-Spectral Methods

Pseudo-spectral methods are both efficient and accurate, but require a periodic
domain, cf. Rogallo (1981) and Canuto et al. (1988). Here, the domain is a cube of
size L = 2π which is discretized on a grid with N3 grid points. In real space, the
grid is defined as

x = (i, j, k)2π

N
, (2.1)

where 1 ≤ i, j, k ≤ N . The wavenumber components κ in Fourier space read

κ = (i, j, k)2π

L
, (2.2)

where −N
2 + 1 ≤ i, j, k ≤ N

2 . A scalar field φ given on the physical grid can now be
transformed to Fourier space by

φ̂(k, t) = 1
N3

∑
x

φ(x, t) exp(−iκ · x) (2.3)

and the Fourier coefficients φ̂(k, t) can be transformed back to real space by

φ(x, t) =
∑

k

φ̂(x, t) exp(iκ · x) . (2.4)
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For any real field φ(x, t) the condition φ̂∗(κ, t) = φ̂(−κ, t) holds, where the star
denotes the complex conjugate of φ̂(κ, t). The advantage of this condition is that
only one-half of the Fourier coefficients of any real field need to be calculated and
stored.
When we evaluate a transport equation in Fourier space, the first derivative of

the dependent variable φ(x) can be transformed according to

F
[

∂

∂xi
φ(x)

]
= iκiφ̂(κ) , (2.5)

and the Fourier transform of the second derivative reads

F
[

∂2

∂x2
i

φ(x)
]
= −κ2

i φ̂(κ) , (2.6)

respectively. By using Fourier transform we can thus replace derivative operators by
multiplication by the wavenumber. All derivatives appearing in linear terms of the
transport equation can be treated in this way. However, the Fourier transformation
of a non-linear term in real space

F
[
φ(x)2

]
= φ̂(κ) ∗ φ̂(κ) (2.7)

turns into a convolution in Fourier space. This operation is computationally very
expensive and requires O(N2·3) operations. Therefore, instead of directly evaluating
the convolution operation, the multiplication of the non-linear term is computed
in real space. This approach requires only O(N3 logN3) operations and is called
pseudo-spectral method since only differentiation is performed in Fourier space.

2.1.1 Velocity Field

We solve the three-dimensional Navier-Stokes equations for incompressible fluids in
rotational form

∂u

∂t
+ ω × u = −∇

(
p + 1

2
u2

)
+ ν∇2u+ f (2.8)

with the continuity equation
∇ · u = 0 , (2.9)

where ω = ∇× u is the vorticity, p is the ratio of pressure and density, and ν is the
kinematic viscosity. f is a forcing term which acts on large scales only. Equation 2.8
is solved by a pseudo-spectral method in Fourier space. Applying eq. 2.3 to eq. 2.8
yields

∂û

∂t
+ F (ω × u) = −iκP̂ − νκ2û+ F(f) , (2.10)
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