
1. Introduction
Since the beginning of the information age in the 1960s, the development of magnetic
storage devices played the decisive role for the advancements in computer technology.
The importance of this core technology for the digital revolution is equivalent with
that of the silicon transistor, firstly developed by Morris Tanenbaum in 1954 [Tan55].
Only an ongoing miniaturization and increase in storage density was capable to keep
up with the needs of digitalization in all areas of life [Plu12]. It was only in the last
several years that the solid-state drive (SSD), which is based on integrated circuits and
semiconductor technology, gained importance as a mass storage medium because of
its speed advantage. In terms of storage size, reliability, and price per data volume,
however, the SSD cannot compete with a magnetic hard disk drive (HDD). In these
respects the HDD is still the first choice.

The basic function principle of a HDD has not been changed over decades. A circu-
lar disk coated with a ferromagnetic material rotates beneath a coil which serves as a
switchable electromagnet. The magnetic field of this coil aligns the magnetization of
microscopic areas, the so-called domains, along one of two opposite directions. These
domains represent the bits as the smallest units of digital information. Nevertheless,
during the process of miniaturization many issues had to be solved. The most note-
worthy discovery is for sure the giant magnetoresistance (GMR) [Bai88, Bin89] which
resulted in a dramatical increase of the sensitivity of the reading sensors and allows
for much smaller domains. This importance was eventually honored with the Nobel
Prize in Physics for Albert Fert and Peter Grünberg in 2007. It also demonstrates that
new surprising discoveries are still possible in the field of magnetism and may have a
huge impact on technology. Today the use of perpendicular magnetic recording makes
it possible to realize even higher densities of the data.

Although the hard disk drive concept has proven itself over half a century, the two
major problems, namely liability of the mechanical parts and non-addressability of
individual bits, are still an issue. The information has to be read sequentially from large
blocks limiting the speed of data access. This is in contrast to random-access memory
where in principle every data cell can be accessed directly. Originally this range of
application was covered by transistor-based devices which store the information in form
of electrical charges. Today magnetoresistive random-access memory (MRAM), which
again uses the magnetization for storage, is believed to combine the speed advantage
of direct access with the nonvolatility of conventional magnetic recording. The spin-
transfer induced switching of magnetic cells is the latest advancement currently in
development. Instead of using the magnetic field accompanying high electrical currents
for the switching of data bits, the torque of a much smaller spin-polarized current is used
for the writing process. This reduces not only the power consumption but also allows for

1
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 

Es gilt nur für den persönlichen Gebrauch.



CHAPTER 1. INTRODUCTION

Figure 1.1.: Illustration of state-of-the-art magnetic recording and storage media. (a) Hard disk
drive using perpendicular recording. The perpendicularly magnetized media allows for a much higher
data density than the conventional in-plane type. The disk rotates beneath the writing head which
focuses the magnetic field lines in order to switch single domains. (b) Single data cell of a spin-torque
magnetoresistive random-access memory (ST-MRAM). A spin-polarized electrical current exerts a
torque on the the free layer and switches its magnetization. For the reading process the cell serves as
a magnetic tunnel junction. The illustration is modified from Ref. [Eve14].

much higher element density because of lower crosstalk. At the same time the cell serves
as a magnetic tunnel junction that makes use of the tunnel magnetoresistance (TMR)
effect [Jul75, Miy95] for the purpose of reading and the identification of the magnetic
state. Figure 1.1 illustrates two different state-of-the-art concepts for magnetic data
storage.

Another recently proposed concept for an MRAM is the vortex random access mem-
ory (VRAM) [Boh08]. It uses a combination of alternating magnetic fields and spin-
polarized currents to switch the state of a special magnetic domain pattern [Wae06],
the so-called magnetic vortex. These vortices occur in ferromagnetic microstructures
resembling a disk, and are characterized by a curling of the magnetization around a
core. The direction of this vortex core and the sense of curling can be controlled in-
dependently. By that one single disk can represent even four different states which is
equivalent to two bits of information. Furthermore, the magnetic vortex shows unique
high-frequency dynamics [Cho04] studied intensely. Several concepts for the selective
manipulation of the vortex state, including rotational excitation [Kra07, Kim08], pi-
cosecond excitation by spin-waves [Kam11, Kam12], or out-of-plane currents [Cho10]
have been presented.

All these concepts motivate a detailed investigation of magnetic vortices under the
influence of magnetic fields and spin currents, which is the main topic of this thesis.
In addition we study the topological counterpart, the magnetic antivortex, that has
not attracted much attention to date but shows a similar dynamic behavior [Wan07]
and could also be used for data-storage devices [Dre09]. Many publications are limited
to one single method of investigation. Here we present a comprehensive study that
includes the combination of different experiments, theoretical descriptions, as well as
micromagnetic simulations. As one experimental method we use the time-resolved
x-ray microscopy available at synchrotron-light sources, such as the Advanced Light
Source in Berkeley, CA, USA and BESSY II, Berlin, Germany. It offers a unique
possibility to directly image the vortex dynamics at its genuine time and length scales.
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We develop a profound understanding which is supported by broadband ferromagnetic
absorption spectroscopy that gives the response in the frequency domain.

This work is structured as follows: in chapter 2 we recapitulate the theoretical
background that is necessary for the understanding of vortex dynamics as well as the
experimental techniques. The latter are presented in chapter 3. Furthermore, we give
an overview on the computational methods, with a focus on the numerical solution of
the micromagnetic equations. Although these are known for many decades [Lan35],
only the advancement of computational power in the last twenty years enabled an
accurate simulation of the micron-sized structures investigated in this work. This is
followed by a detailed description of the experimental setups used for x-ray microscopy
and ferromagnetic absorption spectroscopy. Our results are presented in chapter 4. We
begin with a comprehensive analytical model in Sec. 4.1, that describes the excitation
of magnetic vortices and antivortices by two-dimensional fields and spin-currents. The
model is applied to the special case of rotational excitation. For antivortices this
calculation results in a surprising asymmetric coupling to the two driving forces. We
use micromagnetic simulations and time-resolved x-ray microscopy for the verification
of these main findings. In a second part, Sec. 4.2, we present experimental results that
clearly show deviations from the model derived in the first part. This motivates us to
introduce additional nonlinear extensions. A detailed understanding of these aspects
is the key for a successful application of vortices for data storage, as presented above.
The extensions include nonparabolic and anisotropic confining potentials as well as
a critical limit for the vortex velocity. Finally, the presentation of our results closes
with a conclusion in chapter 5. Most of the work presented is published in articles of
peer-reviewed journals. We concentrate on the results of four publications. A full list
of publications is found in appendix D.
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2. Theoretical background
This chapter deals with the descriptions of ferromagnetism in magnetic microstruc-
tures. The theoretical background presented here is important for the understanding
of the methods employed in this work and for the analysis of the experimental data.
We start with a short explanation of the quantum-mechanical origin of ferromagnetism
in Sec. 2.1. In Sec. 2.2 we limit our considerations to the micromagnetic model, which
is capable of describing ferromagnetism on a micrometer length scale. We present the
energy contributions that affect the static and dynamic behavior of nanomagnets. The
Landau-Lifshitz-Gilbert equation and the Thiele equation are introduced as the equa-
tions of motion of the magnetization. They are extended to account for the influence of
spin-polarized electrical currents. The last section 2.3 discusses the magnetic circular
dichroism, which is observed for x-ray light absorbed by ferromagnets and which is
used for time-resolved measurements of the magnetization dynamics in this work.

2.1. Magnetism in solids
The magnetizationM of a solid is defined as the magnetic moment per volume. Exter-
nal magnetic fieldsH interact with the magnetic moments of atoms or can induce these
moments in the first place. Depending on whether these atoms have intrinsic magnetic
moments or there are interactions between neighboring atoms, there are several phe-
nomena that have to be distinguished. These differ in the behavior of the magnetic
induction B that is proportional to the sum of magnetic field and magnetization:

B = μ0 (H+M) , (2.1)

where H and M are measured in units of ampere per meter, and B in units of tesla
with 1 T := 1 V s m−2. Also μ0 = 4π × V s A−1 m−1 is the magnetic permeability of
the vacuum. In vacuum where no magnetic moments are present (M = 0), Eq. 2.1
simplifies to B = μ0H. This is also a good approximation for most gases, in particular
for air.

In solids, however, there are induced or inherent magnetic moments (M �= 0) that
interact with the magnetic field H. So these two fields are not independent of each
other. To describe their relation we define the dimensionless magnetic susceptibility χ
by:

M = χH . (2.2)
Inserting this into Eq. 2.1 we also get the relation between magnetic induction and
magnetic field:

B = μ0 (H+ χH) = μ0 (1 + χ)H = μ μ0H , (2.3)
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characterized by the relative magnetic permeability μ = 1 + χ.

Diamagnetism and paramagnetism:
Every single electron of an atom’s electron shell possesses a magnetic moment. The
overall magnetic moment of the electron configuration is determined by the Pauli ex-
clusion principle and Hund’s rules. In the case of a diamagnetic material the magnetic
moments inside the electron shell compensate each other, so that the atom has no
effective magnetic moment. Nevertheless, an external magnetic field always induces a
small magnetic moment that is proportional but antiparallel to this field. The magnetic
susceptibility χ becomes a scalar quantity with:

χ < 0 =⇒ μ = 1 + χ < 1 (diamagnetism). (2.4)

By that also the magnetic induction B is proportional to the magnetic field but slightly
reduced compared to the vacuum case. Every material shows a diamagnetic behavior
that is often overcome by other magnetic properties.

In the case of paramagnetism the magnetic moments of the electrons do not com-
pensate each other and the atoms hold finite magnetic moments. These moments are
not coupled and thus disordered but can be aligned in parallel when an external field
is applied. This results once more in a magnetization proportional to H, but now with
positive scalar susceptibility and a relative permeability greater than one, respectively:

χ > 0 =⇒ μ = 1 + χ > 1 (paramagnetism). (2.5)

The magnetic induction is increased compared to the case of the vacuum. An example
are the alkali metals with only one s-electron that gives a large contribution to the
permeability. The disorder of the moments strongly depends on temperature, making
χ (T ) and μ (T ) temperature-dependent functions.

Ferromagnetism:
In ferromagnetic materials the magnetic moments are not independent but sponta-
neously align parallel to each other inside of small regions, the so-called magnetic
domains. The origin of ferromagnetism is the quantum mechanical electron exchange,
that bases on the Pauli principle and the Coulomb repulsion of two electrons [Sto06].
Even in one of the simplest two-electron system, the helium atom, these give rise to
a splitting into singlet and triplet states with different alignment of the spins and
energies.

Inside a solid the electron exchange is often illustrated using the simple ansatz of the
Heisenberg model [Hei28]. Assuming parallel or antiparallel alignment of N electron
spins, the effective Heisenberg Hamiltonian is given by:

Ĥeff = −2
N∑

i<j

Jij ŝi · ŝj . (2.6)

Here ŝi,j are the spin operators and Jij is the exchange integral with:

Jij =
∫ ∫

Φi (r1) Φj (r2)
e2

4π |r2 − r1|Φ
∗
i (r2) Φ∗j (r1) dr31dr32 . (2.7)
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Φi,j are the single electron wave functions. For ferromagnetic coupling Jij is positive
and the energy of the system is lowered for a parallel configuration of the spins.

The Heisenberg model assumes localized spins. In the ferromagnetic 3d-transition
metals (Fe, Co, Ni) and their alloys, however, the magnetic moment is carried by the 3d
electrons. The latter are delocalized since the periodicity of the crystal lattice causes
the formation of a band structure for these 3d electrons. Nevertheless these bands
are energetically split due to the exchange interaction and differently occupied. The
unequal amounts of majority and minority spins results in an averaged net magnetic
moment [Sto06].

Due to the formation of magnetic domains the relation between the magnetic field
and the magnetization of a solid is much more complicated than in the case of diamag-
nets and paramagnets. In particular the magnetization inside one of these domains
is several orders of magnitude greater and its absolute value is a material specific
constant:

M (r) = MSm (r) . (2.8)

Here MS is the so-called saturation magnetization and the unit vector |m| = 1 gives
the direction of the magnetization inside of the domain with position r. The averaged
magnetization depends on the shape, size and direction of the magnetic domains and
does not have to be in parallel with the magnetic field. Furthermore it depends on the
history of the applied field and on additional anisotropies that favor specific directions
for alignment (e.g. the magneto-crystalline anisotropy). In the most common case
only a differential susceptibility can be defined as a 3 × 3 tensor that consists of the
partial derivatives of M with respect to the components of H. By that the differential
susceptibility describes the change of magnetization for a distinct infinitesimal variation
of the magnetic field. A typical hysteresis curve of a macroscopic ferromagnetic body
is shown in Fig. 2.1. For soft-magnetic materials with low anisotropies the coercive
field is small and the hysteresis loop is almost closed.

2.2. Micromagnetic model and Landau-Lifshitz
equation

As mentioned in Sec. 2.1, the behavior of the magnetization in macroscopic ferromag-
netic bodies is complicated but can be described very well neglecting the exact under-
lying microscopic processes. The magnetization is represented by only one averaged
"macro spin" for the whole body. While this description is valid for magnetic samples
in the millimeter range and above, it cannot be applied for magnetic microstructures
where the dimensions go down to the size of a few or single domains. In this inter-
mediate range also the atomic theory is not applicable because of the vast number of
single spins that have to be considered.

Because magnetic microstructures are the main focus of this thesis, we will con-
centrate on a model that can describe the static states as well as the dynamics of
the magnetization in this intermediate range. This model is called the Micromag-
netic Model and is based on the treatment of the magnetization as a continuous vector
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Figure 2.1.: Hysteresis curve of a macroscopic ferromagnetic body. The projection M of the magne-
tization is plotted against the magnitude H of the applied field. In saturation all domains are aligned
parallel to the magnetic field. Because of anisotropies the domains maintain this direction also at zero
field, resulting in a averaged remanence magnetization MR. To demagnetize the body a coercitive
field HC with reversed direction has to be applied.

field M (r), that is in contrast to the two approaches mentioned above. This vec-
tor field is connected to a set of micromagnetic energies and fields that abstract the
quantum-mechanical origin of ferromagnetism. Following the variation principle one
can derive an equation of motion for the magnetization known as the Landau-Lifshitz
equation. The micromagnetic energies that are needed to explain the behavior of soft
ferromagnetic materials are shown in the following. Subsequently we will introduce the
Landau-Lifshitz equation and the derived Thiele equation that describes the motion of
entire magnetization patterns as a rigid particle.

2.2.1. Exchange energy
The Heisenberg Hamiltonian Ĥ describes the interaction of localized and neighboring
spins only. To adopt this model to the continuum one can expand it into a Taylor
series. A similar approach can be found e.g. in references [Kit49] and [Blu01]. We
start with the Heisenberg Hamiltonian, where the exchange integral J of two spins Si
and Sj is positive for ferromagnetic materials:

Ĥ = −J Si · Sj = −JS2 cos Φij (2.9)

For small angles Φij between the spins we can expand the cosine using cos x ≈ 1− x2

2
and derive:

Ĥ = −JS2 + JS2

2 Φ2
ij , (2.10)

where the first term can be neglected because it is constant and gives an offset energy
only.
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For simplification we now assume a cubic lattice where the lattice constant a equals
the nearest neighbor distance. The volume of the unit cell is a3. According to Eq. 2.10
the energy density εij inside of one single cell is then given by:

εij = JS2

2 a3 Φ2
ij . (2.11)

We now make the continuum approximation for the magnetization m using Φ ≈
|(a · ∇)m| and derive an energy density of:

εexch = A ·
[
(∇mx)2 + (∇my)2 + (∇mz)2

]
with A = JS2

2 a
. (2.12)

The exchange constant A is a material specific parameter and the exchange energy Eexch
of the entire magnetic body is given by the integration of εexch over the body’s volume V :

Eexch = A
∫

V
(∇mx)2 + (∇my)2 + (∇mz)2 dr3 . (2.13)

In literature the term (∇mx)2 + (∇my)2 + (∇mz)2 is often shortened by (∇m)2, that
has not to be confused with the squared divergence ofm. We see that inhomogeneities
of the magnetization cause the exchange energy to increase. For a homogeneously
magnetized body the gradients of the components of m equal zero everywhere and
the exchange energy in minimal. The exchange energy is called a local energy because
its density depends only on the local magnetization. Its calculation is thereby rather
trivial.

Because the exchange energy favors a parallel alignment of neighboring magnetic
moments their direction can only change slowly over a finite distance. This charac-
teristic length depends on additional energy contributions. In soft-magnetic materials
without anisotropies we can restrict to magnetostatic interactions which results in the
magnetostatic exchange length lS:

lS =
√

2A

μ0M2
S

. (2.14)

For the alloy Ni80Fe20 (permalloy) we find lS ≈ 5 nm. This serves as a lower limit for
magnetic inhomogenities such as domain walls or magnetic vortices which are discussed
in this work.

2.2.2. Zeeman energy
The Zeeman energy Ez describes the interaction of the magnetization M with an
external field Hex [Hub98]:

Ez = −μ0

∫
V
M ·Hex d3r . (2.15)

This energy is minimized by the parallel alignment of the magnetization to the applied
field. If Hex is large enough to overcome all other contributions to the total energy the
magnetic structure can be saturated in the given direction.
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2.2.3. Demagnetization energy
The demagnetization energy arises from the interaction with a magnetic field, that is
generated by the magnetization distribution itself. The origin of this field is directly
connected to Gauss’s law for magnetism (Maxwell’s second equation) which reads:

∇ ·B = 0 . (2.16)

The magnetic inductionB is a divergence free vector field. Thus, it possesses no sources
or sinks: it is solenoidal. Another often used description is that magnetic monopoles
do not exist. This can be somehow confusing. Although this statement is true for the
magnetic induction B, it does not hold for the magnetic field. By comparing Eq. 2.16
with Eq. 2.1 we derive in the absence of external magnetic fields:

∇ ·B = μ0∇ · (Hd +M) = 0 (2.17)
⇔ ∇ ·Hd = −∇ ·M .

Since the magnetic induction has to be solenoidal, the sinks of the magnetization are
compensated by the sources of a magnetic field. This is called demagnetization fieldHd
inside the ferromagnet and stray field in the outside. The inverse case is valid as well:
the sources of M are the sinks of Hd.

Furthermore, Ampère’s law states that the magnetic field is irrotational (∇×H = 0)
in the absence of electrical currents. Every irrotational vector field can be described
as the gradient of a scalar potential, so we can define the magnetostatic potential Φd:

Hd = −∇Φd . (2.18)

By inserting this into Eq. 2.17 we get Poisson’s equation for the magnetostatic potential:

ΔΦd = − (ρV + σS) , (2.19)

where the magnetic volume charges ρV and magnetic surface charges σS are defined
by [Mil07]:

ρV = −∇ ·M and σS =M · n . (2.20)

Here, n is the normal vector of the surface. The definition of magnetic surface charges
takes into account, that the divergence is not defined on the surface of a magnetic body.
Furthermore, all magnetic charges sum up to zero. The calculation of the magnetostatic
potential is completely analogous to the problem of the electrostatic potential Φel and
electrical charges ρel. The solution of Eq. 2.19 is given by:

Φd (r) = 1
4π

[ ∫
V

ρV (r′)
|r− r′| d3r′ +

∮
∂V

σS (r′)
|r− r′| d2r′

]
. (2.21)

Using the identity
∇ 1
|r− r′| = r− r′

|r− r′|3 (2.22)
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