
CHAPTER 1
Introduction

Es ist nicht das Wissen, sondern das Lernen, nicht das
Besitzen, sondern das Erwerben, nicht das Dasein, son-
dern das Hinkommen, was den größten Genuß gewährt.

Carl Friedrich Gauß

EQ

1.1 Complexity Theory and Logic

Solving problems through an algorithm was already done by the
Babylonians 1600 B.C. They described a formal method to solve
the problems of factorizing and finding the square root of a natural
number.

In order to study what kind of problems are theoretical decidable,
Alan Turing introduced in 1936 [Tur36] a simple machine model,
called Turing machine. The Church-Turing Thesis states that the
class of intuitive computable problems coincides with the problems
that a Turing machine can decide. Turing also shows in [Tur36] that
there are problems which are not decidable by a Turing machine and
thus it is very likely that there are problems that are not decidable
by any machine model.

The modern complexity theory uses this machine model to answer
questions concerning how efficient a problem can be solved. On the
one hand it is interesting how much time is needed to answer a
question of a problem and on the other hand how much memory is
necessary to solve the problem. Often one considers the question
whether a given problem can be solves efficiently. A problem is effi-
ciently decidable if a corresponding decision algorithm exists, which

13

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

needs at most polynomial running time with respect to the length
of the question. If a problem can be solved in polynomial time we
also say that the problem is a member of the complexity class P.
Usually a problem is classified to be intractable if the best known
algorithm has an exponentially large runtime.

Another well known complexity class is the class of efficiently ver-
ifiable problems. This class is called NP. A problem is in the class
NP if and only if a possible solution of the problem can be verified in
polynomial time. It is not known if every efficient verifiable problem
is also efficiently decidable. But since every efficiently solvable prob-
lem is also efficiently verifiable we know that P ⊆ NP. The question
whether P is a strict subset of NP is the most prominent question
in theoretical computer science. Often this problem is called the
P-NP problem. A well known problem in NP is the travelling sales-
man problem. A salesman wants to visit n cities, where each city
is reachable from another in a specific time. Now the problem is to
determine if it is possible that the salesman can find a tour through
all cities within time at most k.

In order to solve the P-NP question the theory of NP-complete
problems was studied. NP-complete problems are roughly spoken
the hardest problems within NP. If one can find an efficient algo-
rithm for an NP-complete problem this algorithm can also be used to
solve all other NP-complete problems efficiently. The first problem
that was shown to be NP-complete was the satisfiability problem for
Boolean formulae (SAT). Cook and Levin have proven separately
that that SAT is NP-complete in [Coo71, Lev73]. The satisfiabil-
ity and the model checking problem are together the most impor-
tant decision problems concerning the computational complexity of
a logic. In the case of Boolean formulae the satisfiability problems
decides whether for a given formula an assignments of the variables
exists such that the formula evaluates to true. On the other hand
the model checking problem for Boolean formulae decides whether
a given formula without variables is equivalent to true or not.

Since Cook and Levin had shown the NP-completeness result for
SAT many other problems were shown to be NP-complete. Since so
much work is done regarding the P-NP question and many problems
were classified to be NP-complete, but no one was able to prove a
P algorithm for any NP-complete problem, a common conjecture is
that P is a strict subset of NP.

14

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2 Dependence Logic

mulae, but on an extension of such formulae. We are studying the
computational complexity of modal logic (ML) variants in the con-
text of functional dependencies between propositions. Modal logic
adds to Boolean formulae the possibility to express sentences like “It
is possible that...” and “It is necessary that...”. During this thesis
we will study several extensions of this logic and classify them with
respect to their expressibility and computational complexity.

In the following sections we will give an introduction into the
topics and logics that are studied in this thesis. We will also show
for each topic how it fits into the current state of research.

1.2 Dependence Logic

In natural language it is common to express dependencies like:

“The occurrence of a rainbow is not only determined by the
current weather.”

From a scientific point of view expressing dependencies between
values of variables is very important. For example dependencies are
occurring in the data of physical experiments or in computer science
during the execution of a discrete system.

An often used tool for formalizing systems, experiments or facts
is first-order logic (FO). Consider the following FO-formula:

∃x0∃x1∀x2∃x3φ,

where φ is quantifier free. In the usual interpretation the value of x3
depends on the values of x0, x1 and x2, but suppose in order to state
the required property we have to encode that the value of x3 does
not depend on x1, x2 and that the values of x1, x2 are independent of
x0. Therefore Henkin introduced in [Hen61] the notion of partially-
ordered quantifiers, where the desired property can be expressed
through a parallel execution of the quantifiers:

(∃x1∀x2
∃x0∃x3

)
φ.

If we want to express a more complex dependence, this technique
has its limits. Assume that x3 should not depend on the value of x1

15

In this thesis the focus is not on the complexity of Boolean for-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

and x2. Because this dependence structure can not be easily trans-
formed into partially ordered quantifiers, Hintakka and Sandu in-
troduced in [Hin98] the notion of independence friendly logic, where
independencies are written as:

∃x0∃x1∀x2∃x3\{x1,x2}φ.
Recently in 2007 Väänänen introduced dependence logic (D), where
dependencies are modelled by a special first-order dependence atom.
The following atom expresses that the term tn is functionally deter-
mined by the terms t1, . . . , tn−1:

=(t1, . . . , tn−1; tn)

Functional dependence in this context means that the value of tn
is given by f(t1, . . . , tn−1) for an arbitrary function f : An−1 → A,
where A is the universe. Now the sentence that x3 does not depend
on x1, x2 and x1, x2 are independent from x0 is modelled in D as

∃x0∃x1∀x2∃x3=(x0;x3) ∧=(x1) ∧=(x1;x2) ∧ φ.
Whereas the other sentence that x3 only depends on x0 is modelled
by

∃x0∃x1∀x2∃x3=(x0;x3) ∧ φ.
Clearly the notion of dependence does not make sense in the con-
text of a single world or a single experiment. Therefore we have to
consider multiple worlds or experiments in order to observe depen-
dencies. We call such sets of worlds, or experiments, teams.
For example consider the team described by Table 1.1 which cor-

responds to the multiple execution of a physical experiment, where
in each experiment the position of a particle and its velocity is mea-
sured over k time steps. An element of the considered universe is a
tuple of two natural numbers.
Now we want to verify the physical law of classical mechanics that

the position of a particle is determined by its previous position and
its prior velocity.

k−1∧
i=1

=(pi, vi; pi+1)

Obviously for the team given in Table 1.1 this is true, because the
following function f exists:

f(p, v) = v + p.

16

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3 Modal Dependence Logic

p1 v1 p2 v2 · · · pk vk
t1 (5,4) (1,0) (6,4) (3,2) · · · (2,1) (1,0)
t2 (7,2) (1,1) (8,3) (3,0) · · · (8,5) (0,1)
t3 (7,4) (2,1) (9,5) (1,2) · · · (2,7) (3,2)
t4 (8,0) (2,2) (10,2) (2,1) · · · (4,8) (0,1)
t5 (9,0) (3,2) (12,2) (1,0) · · · (0,0) (2,0)
t6 (9,6) (3,3) (12,9) (2,1) · · · (1,4) (4,3)
t7 (1,4) (4,3) (5,7) (1,0) · · · (0,7) (1,4)

Table 1.1: Experimental data

1.3 Modal Dependence Logic

Modal Dependence Logic (MDL) was introduced by Väänänen in
2008 [Vää08] and transfers the concept of functional dependence
into the context of modal logic.
In contrast to first-order dependence logic in MDL dependencies

occur between propositions and not between terms. By considering
the standard embedding of modal logic into first-order logic, de-
pendencies are expressed between unary relations and not between
terms.
Because the phenomena of dependence cannot be observed in a

single world of a Kripke model, we have to consider a set of worlds.
We call such sets of worlds teams. A team could for example be a
set of evaluations of a physical experiment or multiple states of a
discrete system.
In the following we want to give an example on how dependen-

cies can be modelled in a discrete system. Therefore consider the
following safety condition of an automotive software system.

“The activation of the anti-lock breaking system (ABS) is
determined by the relational speed of the four wheels.”

In order to express this sentence we encode the relational speed
for each wheel by 8 propositions, which corresponds to an 8-bit
sampling of the relational speed,

s11, . . . s
1
8, . . . , s

4
1, . . . , s

4
8.

If the ABS is activated is encoded with 1-bit by aABS. Now the

17

following MDL-formula expresses the sentence:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

=(s11, . . . , s
1
8, . . . s

4
1, . . . , s

4
8; aABS).

In order to study the computational complexity of MDL, usually
two decision problems are considered. The first is the satisfiability
problem, which decides for a given MDL-formula whether there ex-
ists a Kripke model and a team such that the formula is satisfied.
The second is the model checking problem which decides for a given
MDL-formula, a given Kripke model and a given team whether the
formula is fulfilled in the model and the team or not. These decision
problems are well studied for MDL. In [Sev09] Sevenester showed
that satisfiability for MDL-formulae is NEXPTIME-complete, which
means it is intractable. Therefore Lohmann and Vollmer classified
in [LV10] the satisfiability complexity of MDL operator fragments.
They have shown that there are tractable operator fragments where
the corresponding satisfiability problem is P-complete.
Ebbing and Lohmann investigated in [EL12] the model checking

complexity of MDL and they showed that model checking for MDL-
formulae is NP-complete. In order to find tractable fragments of
MDL they also studied the complexity for operator fragments and
they found subsets of MDL were the corresponding model checking
problem is decidable in P.

1.3.1 Modal Team Logic

Modal team logic (MTL) extends MDL by Boolean negation. Thus
MTL can make use of all Boolean functions and many other team
and dependence operators. Since all Boolean functions are available,
MTL can express a very important kind of sentences:

“If in a system a property q is determined by the properties
p1, . . . , pn than the system has to be in the state φ.”

This kind of implication is not expressible in MDL, but it is a very
useful in the description of automated systems.
Another kind of implication was investigated by Ebbing, Lohmann

and Yang in [ELY11]. They studied modal intuitionistic dependence
logic (MIDL), which adds toMDL an intuitionistic implication. They
have shown that MIDL-MC is PSPACE-complete. We will see in
Chapter 4 that MTL can simulate MIDL as well.
Actually we will show that MTL is the most expressive modal

dependence logic that had been considered so far.

18

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.4 Independence Logic

1.4 Independence Logic

Functional dependencies were widely studied since Vänäänen in-
troduced dependence logic, for example in [Kon10, Loh12, Ebb12,
Yan14]. Somehow functional dependence is the strongest notion of
dependence because a variables value is absolutely determined by
other variables values. Väänänen introduced together with Grädel
in 2013 [GV13] independence logic (I). The following sentence in
independence logic

x1, . . . , xn⊥y1, . . . yn
denotes that the variables x1, . . . , xn are independent of the vari-
ables y1, . . . , yn. But what does this mean exactly? In order to
establish such a strong independence notion, as Väänänen did for
dependence logic, it means that if the values of x1, . . . , xn are given
we can say nothing about the values of y1, . . . , yn and vice versa.
This kind of independence is used in many scientific disciplines

like physics, cryptography or statistical mathematics. For example
consider the following informal example which corresponds to a law
of physics:

“The size of a falling particle is independent of its mass.”

Also consider the following example, which relates to the notion of
independence in statistical mathematics, which is compatible to the
independence notion given above:

“The result of rolling a dice is independent from the result of
rolling another dice.”

In [GV13] Grädel and Väänänen also studied the expressive power
of I. They have shown that independence logic is equally expressive
as existential second-order logic which is again equally expressive as
dependence logic.
In this thesis we want to investigate a modal version of indepen-

dence logic, called modal independence logic (MIL). We will show
that from a complexity point of view MDL and MIL are equivalent
for the decision problems satisfiability and model checking, because
the decision problems for the two problems are decidable in the same
complexity classes. But we will also show that they differ in their
expressive power. In contrast to first-order logic, MIL is strictly
more expressive than MDL.

19

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

1.4.1 Generalized Dependence Atoms

We have seen so far dependence and independence logic which are
both extensions of first-order logic with teams semantics by new
atoms. Galliani introduced in [Gal12] two other atoms, namely the
inclusion atom (⊆) and the exclusion atom (|). He proved that
FO(⊆, |) is also equally expressive as existential second order logic
and thus I ≡ D ≡ FO(⊆, |). We do not want to get deeper into the
definition of these newly added atoms, but since all of this logics
are equivalent in terms of expressive power, the question arises if
their is a more general notion of team atoms. Therefore Kuuisto
introduced in [Kuu13] the notion of generalised dependence atoms.
He introduces generalised atoms trough first-order formulae which
are defining the atoms. Afterwards it was shown by Galliani in
[Gal13] that with the independence atom all generalised atoms can
be expressed, that are defined trough a first-order formula and are
fulfilled by the empty team.
In this thesis we are introducing the concept of generalised depen-

dence atoms for modal logic. We will give a notion of generalised
atoms that are defined trough sets of Boolean matrices and a more
restricted characterisation trough FO-formulae over Kripke struc-
tures. We will show that the computational complexity of satisfia-
bility and model checking for modal logic with FO-definable atoms
is at most as complex as for MDL.

1.5 Temporal Logic

Temporal logics are a well studied technique for verifying and mod-
elling automated systems. Temporal logics extending modal log-
ics by introducing new modalities, called temporal operators. In
[BdRV01, Chapter 1.2] the basic version of temporal logic TL was
discussed. TL is a multi-modal logic, where each modality operates
on a different relation. In TL the past operator 〈P 〉 and the future
operator 〈F 〉 were introduced, where the past operator is defined on
a backwards and the future operator on a forwards relation. Usually
these relations are defined in dual to each other.
Since this approach is not expressive enough to formulate com-

plex temporal properties of a system, the computational tree logic
CTL was introduced by Emerson and Clark in [CE81]. Also linear
temporal logic LTL is a widely used temporal logic, which was intro-

20

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.6 Publications

duced by Sistla and Clark [SC85]. In both logics the newly added
’until’, ’future’ and ’globally’ modalities are used to express tempo-
ral phenomena. The difference between CTL and LTL is that in LTL
properties are always expressed over a single path in time. For ex-
ample properties of a single run of an automated system. Whereas
CTL expresses temporal properties on the possible branching struc-
ture of a system. Therefore consider the following LTL-formula

E(Fφ→ Gψ),

which informally means that there exists a path such that if there
exists a point in the future where φ holds, ψ has to hold on the cur-
rent and all future points. This property is not expressible in CTL.
In Chapter 6 we transfer the concepts of the basic temporal logic
to modal dependence logic. We introduce extended modal depen-
dence logic (EMDL) as an extension ofMDL by multi-modalities and
allowing to state dependencies between multi-modal ML-formulae.
Now in contrast to MDL, EMDL can express dependencies between
events in time. Therefore consider the following possible physical
behaviour in classical mechanics:

“The state of a particle is determined by its k previous states.”

We can not express this phenomena with MDL, but with the follow-
ing EMDL formula

=(〈P 〉φ, 〈P 〉2φ, . . . , 〈P 〉kφ;φ),
where φ encodes the state of the particle.
Again as mentioned for basic temporal logic with EMDL it is

difficult to express complex temporal properties of an automated
system. Thus in the conclusion of Chapter 6 we give an outlook
towards linear temporal dependence logic (LTDL). With LTDL it
is possible to express dependencies in points of time during the
evaluation of one specific time line.

1.6 Publications

Chapter 3 is based on [EKMV12]. In Chapter 4 Theorems 31, 33
and Section 4.3 base on [MV13]. The other results in Chapter 4 are
new. The results of Chapter 5 base on [KMSV14]. Finally Chapter 6
base on [EHM+13], but the part about linear temporal dependence
logic in the conclusion is new.

21

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

1.7 Results

In Chapter 3 we will introduce two Horn fragments of dependence
logic. We will show that the less restricted version, where at most
one occurrence of a determined existentially quantified variable is
allowed in each clause, can express NP-complete problems. Also in
that chapter we will prove that the more restricted version, where
additionally existentially quantified variables y, y′ can only occur in
atoms like y = y′ and y = 0, is equivalent to second-order Horn
logic.
In Chapter 4 we turn to the study of variants of modal logic with

team semantics. We will show that MTL-MC is in general PSPACE
complete, but by restricting the set of allowed operators we obtain
PNP[1], P, NL and NC1-complete fragments. We will also study the
influence of the Boolean negation. We will prove that by restricting
the nesting of the Boolean negation to at most k, MTL-MC is Σpk+1-
complete for even k. Finally we consider Post’s technique to classify
MTLB(♦)-MC for any arbitrary set B of Boolean functions. Further-
more we will show that MTLL(♦)-MC is PSPACE-complete and thus
the exclusive disjunction is sufficient for a PSPACE-completeness
result.
A modal variant of independence logic will be studied in Chap-

ter 5. We consider the expressive power ofMIL and we will show that
on teams MIL is more expressive than MDL and on singletons MIL is
equally expressive as ML. We also classify the computational com-
plexity of the decision problems satisfiability and model checking. It
will be obtained that MIL-SAT is NEXPTIME-complete and MIL-MC
is NP-complete. Afterwards we generalise some of these results to a
whole set of team based modal logics. We consider generalised de-
pendence atoms and we will show that for FO-definable atoms the
upper bound, for satisfiability and model checking, are the same as
for MIL. The expressive power of these atoms on singletons will be
proven to be equal to the expressive power of ML.
Finally in Chapter 6 we define a modal dependence logic vari-

ant which can express temporal phenomena. We will show that
EMDL-MC is NP-complete and EMDL-SAT is NEXPTIME-complete.
By comparing the expressive power of EMDL and MDL we will show
that EMDL is strictly more expressive. We will also give a short out-
look towards the definition of a linear temporal dependence logic.

22

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

