

Michael Wieczorek (Autor)

Errichtung, Betrieb und Erweiterung einer 1 MW-Versuchsanlage zur Erforschung des Carbonate Looping-Verfahrens zur Abtrennung von CO2 aus Rauchgasen

https://cuvillier.de/de/shop/publications/6752

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhalt

KURZFASSUNG	12
1. EINLEITUNG	13
1.1 Eigenschaften von Kohlenstoffdioxid	15
1.2 Treibhauseffekt	15
1.3 Senkung der CO ₂ -Emissionen aus Prozessen zur Stromerzeugung	
1.3.1 Wirkungsgraderhöhung	
1.3.2 Abtrennung von Kohlenstoffdioxid aus Rauchgasen	18
1.4 Zielsetzung	18
1.5 Strategie bei Errichtung und Erweiterung der Versuchsanlage	21
2. STAND VON WISSENSCHAFT UND TECHNIK	22
2.1 Pre-Combustion-Verfahren	23
2.1.1 IGCC-Prozess mit CO ₂ -Abtrennung (IGCC-CCS)	23
2.2 Oxyfuel-Verfahren	23
2.2.1 Oxyfuel-Feuerung	23
2.2.2 Chemical Looping	24
2.3 Post-Combustion-Verfahren	25
2.3.1 Druckwechseladsorption	26
2.3.2 MEA-Wäsche	
2.3.3 Wäsche mit Aminosäuresalz (PostCap™-Verfahren)	
2.3.4 Chilled Ammonia	
2.3.5 Carbonate Looping	28
2.4 Wirbelschichten	32
2.4.1 GELDART-Klassifikation von Partikeln	36
2.5 Verwendungsmöglichkeiten von Kohlenstoffdioxid	37
2.5.1 Weiterverwendung von Kohlenstoffdioxid in der chemischen Industrie	
2.5.2 Enhanced Oil Recovery (EOR)	
2.5.3 Enhanced Coal Bed Methane Production (ECBM)	
2.5.4 Power-to-Gas	38

2.6 Lagerung von Kohlenstoffdioxid	38
2.6.1 Speicherung in salinen Aquiferen	38
2.6.2 Lagerung im Meerwasser	39
2.6.3 Lagerung in ausgebeuteten Öl-, Gas-, oder Kohlelagerstätten	39
3. BESCHREIBUNG DER CARBONATE LOOPING-VERSUCHSANLAGE	40
3.1 Karbonator CFB600	42
3.1.1 Reaktionsraum	
3.1.2 Möglichkeiten zur Aufheizung des Karbonators auf Betriebstemperatur	
3.1.3 Zyklon	
3.1.4 Karbonatorumlaufschleuse	44
3.2 Kalzinator CFB400	45
3.3 Kopplungskomponenten	
3.3.1 Schneckenförderer zur Kopplung des Karbonators an den Kalzinator	
3.3.2 Umlaufschleuse zur Kopplung des Kalzinators an den Karbonator	47
3.4 Feuerfeste Auskleidung	48
3.5 Kühlsystem	
3.5.1 Sicherheit und Redundanzen	49
3.6 System zur Aufbereitung und Verteilung der als Brennstoff eingesetzten Kohle	50
4. MESSTECHNIK	51
4.1 Temperaturmessung	51
4.1.1 Widerstandsthermometer	52
4.1.2 Thermoelement	52
4.2 Druckmessung	53
4.3 Massen- und Volumenstrommessung	
4.3.1 Thermischer Massendurchflussmesser	
4.3.2 Volumenstrombestimmung mittels Blende	54
4.4 Kontinuierlich arbeitende Gasanalytik	
4.4.1 Infrarotspektrometrie	
4.4.2 Paramagnetische Sauerstoffmessung	56
4.5 Gaschromatographie	
4.5.1 Wärmeleitfähigkeitsdetektor	
4.5.2 Flammen-Ionisationsdetektor	
4.5.3 Massenspektrometrie	59

5. ERSTE VERSUCHSREIHEN MIT DER CARBONATE LOOPING-ANLAGE	60
5.1 CO ₂ -Abtrennung und -Freisetzung im zyklischen Betrieb	60
5.2 CO ₂ -Abtrennung und -Freisetzung im kontinuierlichen Betrieb	65
5.3 Zusammenstellung der wichtigsten gewonnenen Erkenntnisse	66
5.3.1 Einfluss der Karbonatortemperatur auf die CO ₂ -Abscheidung	66
5.3.2 Einfluss der Kühllanzen auf die CO ₂ -Abscheidekapazität des Karbonators	67
5.3.3 Einfluss der Zufuhr von Frischmaterial auf die CO ₂ -Abscheideeffizienz	71
5.4 Verbesserungen der Carbonate Looping-Anlage	72
5.4.1 Interne Rezirkulation des Kalzinators	
5.4.2 Kalzinator-Karbonator-Kopplung mithilfe eines Feststoffspießes	74
5.4.3 Kühlsystem des Schneckenförderers	
5.4.4 L-Valve	
5.4.5 Verbesserte Druckmessung in der Wirbelschicht	
5.5 Optimierte Werkstoffe für den Feuerfestbau	81
5.5.1 Keramische Werkstoffe	82
5.5.2 Metallische Werkstoffe	82
6. ERWEITERUNG DER CARBONATE LOOPING-ANLAGE	84
6.1 Aufbau und Funktion der Brennkammer	85
6.2 Brennkammerkoordinatensystem	88
6.3 Auslegung der Brennkammer und der Ankopplung zur Versuchsanlage	89
7. BRENNKAMMERVERSUCHE UND VALIDIERUNG DER AUSLEGUNG	91
7.1 Brennkammer im Einzelbetriebsmodus	91
7.2 Umlasten der Brennkammer auf Kohle im Einzelbetriebsmodus	94
7.3 Kopplung der Brennkammer an die Versuchsanlage	97
7.3.1 Einfluss kohlestämmiger Rauchgase auf das Carbonate Looping-Verfahren	
8. MESSSYSTEM ZUR BESTIMMUNG VON HEIßGASKOMPONENTEN	102
8.1 Heißgasentnahmesonde	103
8.2 Verwendete Gasanalytik	105
8.2.1 Konfiguration 1: kontinuierliche Gasanalyse vor GC/MS (GC-low-dust)	105
8.2.2 Konfiguration 2: GC/MS vor kontinuierlicher Gasanalyse (GC-high-dust)	
8.3 Probenaufgabe im Gaschromatographen	107

8.4 Parametrierung des GC/MS	109
8.5 Versuchsaufbau zur Inbetriebnahme des Heißgasentnahmesystems	110
8.5.1 Diskussion der Messergebnisse	112
8.5.2 Fazit der Versuchsreihen zur Heißgasentnahme	117
9. ZUSAMMENFASSUNG UND AUSBLICK	118
9.1 Ausblick	119
9.2 Prozesstechnische Weiterentwicklung	119
ANHANG	121
Abbildungsverzeichnis	122
Tabellenverzeichnis	125
Literaturverzeichnis	126